Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 629(8010): 184-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600378

RESUMEN

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 107(32): 14449-54, 2010 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-20663957

RESUMEN

High levels of corticosteroids (as circulate after stress) quickly and reversibly enhance hippocampal glutamatergic transmission via nongenomic actions requiring mineralocorticoid receptors. Subsequently, the hormone slowly and long-lastingly normalizes hippocampal cell function, through nuclear glucocorticoid receptors. Here we describe a rapid mineralocorticoid receptor-dependent enhancement of glutamatergic transmission in basolateral amygdala neurons. Contrary to the hippocampus, this rapid enhancement is long-lasting, potentially allowing an extended window for encoding of emotional aspects during stressful events. Importantly, the long-lasting change in state of amygdala neurons greatly affects the responsiveness to subsequent surges of corticosterone, revealing a quick suppression of glutamatergic transmission, which requires the glucocorticoid receptor. Responses of basolateral amygdala neurons to the stress hormone corticosterone can thus switch from excitatory to inhibitory, depending on the recent stress history of the organism.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corticosterona/farmacología , Plasticidad Neuronal/fisiología , Potenciales Sinápticos/fisiología , Amígdala del Cerebelo/citología , Animales , Potenciales Postsinápticos Excitadores , Ácido Glutámico , Potenciales Postsinápticos Inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Receptores de Mineralocorticoides/metabolismo , Estrés Fisiológico/fisiología , Transmisión Sináptica
3.
J Neurosci ; 28(48): 12759-64, 2008 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19036968

RESUMEN

Transcription of rRNA genes is essential for maintaining nucleolar integrity, a hallmark for the healthy state and proliferation rate of a cell. Inhibition of rRNA synthesis leads to disintegration of the nucleolus, elevated levels of p53, and induction of cell suicide, identifying the nucleolus as a critical stress sensor. Whether deregulation of rRNA synthesis is causally involved in neurodegeneration by promoting cell death and/or by inhibiting cellular growth has however not been addressed. The transcription factor TIF-IA plays a central role in mammalian rRNA synthesis, regulating the transcriptional activity of RNA polymerase I. To investigate the consequences of nucleolar perturbation in the nervous system, we have chosen to specifically ablate the gene encoding the transcription factor TIF-IA in two different contexts: neural progenitors and hippocampal neurons. Here, we show that ablation of TIF-IA leads to impaired nucleolar activity and results in increased levels of the proapoptotic transcription factor p53 in both neural progenitors and hippocampal neurons but induces rapid apoptosis only in neural progenitors. Nondividing cells of the adult hippocampus are more refractory to loss of rRNA transcription and face a protracted degeneration. Our study provides an unexploited strategy to initiate neurodegeneration based on perturbation of nucleolar function and underscores a novel perspective to study the cellular and molecular changes involved in the neurodegenerative processes.


Asunto(s)
Apoptosis/genética , Hipocampo/metabolismo , Degeneración Nerviosa/genética , Neuronas/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/fisiología , ARN Ribosómico/biosíntesis , Animales , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patología , Hipocampo/patología , Hipocampo/fisiopatología , Ratones , Ratones Noqueados , Ratones Transgénicos , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Neurogénesis/genética , Plasticidad Neuronal/genética , Neuronas/patología , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Ribosómico/genética , Células Madre/metabolismo , Células Madre/patología , Transcripción Genética/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Endocrinology ; 149(7): 3446-51, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18372328

RESUMEN

Glucocorticoid action in the brain is mediated by the glucocorticoid receptor (GR) and the mineralocorticoid receptor, thereby affecting physiological processes such as neurogenesis, synaptic plasticity, and neuroendocrine control. To examine GR function in the regulation of the hypothalamic-pituitary-adrenal axis, we generated GR mutant mice that are homozygous for a conditional GR allele and heterozygous for a transgene that expresses the Cre recombinase under control of the regulatory elements of the mouse calcium/calmodulin-dependent protein kinase IIalpha gene, resulting in Cre-mediated recombination in the brain and pituitary. The GR mutants die about 1 wk after birth and display a fulminant increase in plasma corticosterone as well as a severe histopathological phenotype. To assess in which time frame targeting of the pituitary occurs during embryonic development, we used a transgenic line expressing an inducible CreER(T2) fusion protein under the control of the regulatory elements of the calcium/calmodulin-dependent protein kinase IIalpha gene. Cre reporter data show that pituitary targeting occurred during embryonic development at the time when glucocorticoid synthesis starts.


Asunto(s)
Hipófisis/metabolismo , Receptores de Glucocorticoides/fisiología , Hormona Adrenocorticotrópica/sangre , Hormona Adrenocorticotrópica/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corticosterona/sangre , Glucocorticoides/sangre , Sistema Hipotálamo-Hipofisario/metabolismo , Inmunohistoquímica , Hibridación in Situ , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo
5.
BMC Neurosci ; 8: 63, 2007 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-17683525

RESUMEN

BACKGROUND: The analysis of the role of genes in important brain functions like learning, memory and synaptic plasticity requires gene inactivation at the adult stage to exclude developmental effects, adaptive changes or even lethality. In order to achieve temporally controlled somatic mutagenesis, the Cre/loxP-recombination system has been complemented with the tamoxifen-inducible fusion protein consisting of Cre recombinase and the mutated ligand binding domain of the human estrogen receptor (CreERT2). To induce recombination of conditional alleles in neurons of the adult forebrain, we generated a bacterial artificial chromosome-derived transgene expressing the CreERT2 fusion protein under control of the regulatory elements of the CaMKIIalpha gene (CaMKCreERT2 transgene). RESULTS: We established three mouse lines harboring one, two and four copies of the CaMKCreERT2 transgene. The CaMKCreERT2 transgene displayed reliable and copy number-dependent expression of Cre recombinase specifically in neurons of the adult forebrain. Using Cre reporter mice we show very low background activity of the transgene in absence of the ligand and efficient induction of recombination upon tamoxifen treatment in all three lines. In addition, we demonstrate in mice harboring two conditional glucocorticoid receptor (GR) alleles and the CaMKCreERT2 transgene spatially restricted loss of GR protein expression in neurons of the adult forebrain upon tamoxifen treatment. CONCLUSION: This is to our knowledge the first approach allowing highly efficient inducible gene inactivation in neurons of the adult mouse forebrain. This new approach will be a useful tool to dissect the function of specific genes in the adult forebrain. Effects of gene inactivation on pre- and postnatal brain development and compensatory mechanisms elicited by an early onset of gene inactivation can now be excluded.


Asunto(s)
Silenciador del Gen , Técnicas Genéticas , Neuronas/metabolismo , Prosencéfalo/metabolismo , Alelos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Cromosomas Artificiales Bacterianos , Dosificación de Gen , Expresión Génica , Humanos , Integrasas/genética , Ligandos , Ratones , Ratones Transgénicos , Neuronas/enzimología , Prosencéfalo/citología , Prosencéfalo/enzimología , Estructura Terciaria de Proteína/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes de Fusión , Recombinación Genética/efectos de los fármacos , Tamoxifeno/farmacología , Distribución Tisular/genética , Transgenes
6.
Proc Natl Acad Sci U S A ; 103(1): 195-200, 2006 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-16368758

RESUMEN

Corticosteroid action in the brain is mediated by the mineralocorticoid (MR) and the glucocorticoid (GR) receptor. Disturbances in MR- and GR-mediated effects are thought to impair cognition, behavior, and endocrine control. To assess the function of the limbic MR in these processes, we inactivated the MR gene in the forebrain of the mouse using the Cre/loxP-recombination system. We screened the mice with a limbic MR deficiency in various learning and exploration tests. The mutant mice show impaired learning of the water-maze task and deficits in measures of working memory on the radial maze due to behavioral perseverance and stereotypy. They exhibit a hyperreactivity toward a novel object but normal anxiety-like behavior. The behavioral changes are associated with abnormalities of the mossy fiber projection and an up-regulation of GR expression in the hippocampus. Adult mutant mice show normal corticosterone levels at circadian trough and peak. This genetic model provides important information about the consequences of a permanently altered balance between limbic MR and GR, with implications for stress-related neuroendocrine and neuropsychiatric diseases.


Asunto(s)
Hipocampo/metabolismo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Receptores de Mineralocorticoides/deficiencia , Animales , Corticosterona/sangre , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Modelos Genéticos , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Conducta Estereotipada/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA