Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2313629121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513103

RESUMEN

We demonstrate an exceptional ability of a high-polarization 3D ferroelectric liquid to form freely suspended fluid fibers at room temperature. Unlike fluid threads in modulated smectics and columnar phases, where translational order is a prerequisite for forming liquid fibers, recently discovered ferroelectric nematic forms fibers with solely orientational molecular order. Additional stabilization mechanisms based on the polar nature of the mesophase are required for this. We propose a model for such a mechanism and show that these fibers demonstrate an exceptional nonlinear optical response and exhibit electric field-driven instabilities.

2.
Biophys J ; 122(2): 419-432, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36463405

RESUMEN

Intercellular communication and transport is the essential prerequisite for the function of multicellular organisms. Simple diffusion as a transport mechanism is often inefficient in sustaining the effective exchange of metabolites, and other active transport mechanisms become involved. In this paper, we use the giant cells of characean algae as a model system to explore the role of advection and diffusion in intercellular transport. Using fluorescent dye as a tracer, we study the kinetics of the permeation of the fluorophore through the plasmodesmata complex in the node of tandem cells and its further distribution across the cell. To explore the role of cytoplasmic streaming and the nodal cell complex in the transport mechanism, we modulate the cytoplasmic streaming using action potential to separate the diffusive permeation from the advective contribution. The results imply that the plasmodesmal transport of fluorescent probe through the central and peripheral cells of the nodal complex is differentially regulated by a physiological signal, the action potential. The passage of the probe through the central cells of the nodal complex ceases transiently after elicitation of the action potential in the internodal cell, whereas the passage through the peripheral cells of the node was retained. A diffusion-advection model is developed to describe the transport kinetics and extract the permeability of the node-internode cell wall from experimental data.


Asunto(s)
Chara , Characeae , Colorantes Fluorescentes/metabolismo , Transporte Biológico , Corriente Citoplasmática/fisiología
3.
Soft Matter ; 18(43): 8315-8319, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36300301

RESUMEN

We report an unusually strong flow-induced birefringence in an optically isotropic cubic phase occurring below the isotropic chiral conglomerate phase formed by a low-molecular-weight polycatenar mesogen. The transition into the birefringent state occurs thresholdless and the induced birefringence is comparable with that observed in polymeric systems. We suggest that the flow-induced deformation of the cubic structure is responsible for the strong rheo-optical response.

4.
Soft Matter ; 18(46): 8804-8812, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36354279

RESUMEN

Nematics with a broken polar symmetry are one of the fascinating recent discoveries in the field of soft matter. High spontaneous polarisation and the fluidity of the ferroelectric nematic NF phase make such materials attractive for future applications and interesting for fundamental research. Here, we explore the polar and mechanical properties of a room-temperature ferroelectric nematic and its behaviour in a magnetic field. We show that NF is much less susceptible to the splay deformation than to the twist. The strong splay rigidity can be attributed to the electrostatic self-interaction of polarisation avoiding the polarisation splay.

5.
Phys Chem Chem Phys ; 23(43): 24557-24569, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34755719

RESUMEN

Liquid crystal (LC) based magnetic materials consisting of LC hosts doped with functional magnetic nanoparticles enable optical switching of the mesogens at moderate magnetic field strengths and thereby open the pathway for the design of novel smart devices. A promising route for the fabrication of stable ferronematic phases is the attachment of a covalently bound LC polymer shell onto the surface of nanoparticles. With this approach, ferronematic phases based on magnetically blocked particles and the commercial LC 4-cyano-4'-pentylbiphenyl (5CB) liquid crystal were shown to have a sufficient magnetic sensitivity, but the mechanism of the magneto-nematic coupling is unidentified. To get deeper insight into the coupling modes present in these systems, we prepared ferronematic materials based on superparamagnetic particles, which respond to external fields with internal magnetic realignment instead of mechanical rotation. This aims at clarifying whether the hard coupling of the magnetization to the particle's orientation (magnetic blocking) is a necessary component of the magnetization-nematic director coupling mechanism. We herein report the fabrication of a ferronematic phase consisting of surface-functionalized superparamagnetic Fe3O4 particles and 5CB. We characterize the phase behavior and investigate the magneto-optical properties of the new ferronematic phase and compare it to the ferronematic system containing magnetically blocked CoFe2O4 particles to get information about the origin of the magneto-nematic coupling.

6.
Langmuir ; 36(35): 10615-10621, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32787035

RESUMEN

Coalescence of droplets plays a crucial role in nature and modern technology. Various experimental and theoretical studies explored droplet dynamics in three-dimensional (3D) and on 2D solid or liquid substrates. In this paper, we demonstrate the complete coalescence of isotropic droplets in thin quasi-2D liquids-overheated smectic films. We observe the merging of micrometer-sized flat droplets using high-speed imaging and analyze the shape transformations of the droplets on the timescale of milliseconds. Our studies reveal the scaling laws of the coalescence time, which exhibits a different dependence on the droplet geometry from that in the case of droplets on a solid substrate. A theoretical model is proposed to explain the difference in behavior.

7.
Phys Chem Chem Phys ; 22(4): 2087-2097, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31904077

RESUMEN

Switching of liquid crystal phases is of enormous technological importance and enables digital displays, thermometers and sensors. As an alternative to electric fields or temperature, magnetic fields are an interesting trigger, as they are on the one hand versatile to design, and on the other hand, they are compatible with a bouquet of applications. An interesting option to enable the magnetic switchability of nematic phases is by doping them with functional magnetic nanoparticles, but it remains a challenge to achieve well-compatibilized and stable ferronematic phases. Here, we report a new approach for the experimental realization of finely dispersed MNPs and nematic LC by creation of a surface-coupled mesogen-functionalized polymer brush, and the determination of their corresponding magneto-optical response. For this purpose, CoFe2O4 particles are equipped with a covalently attached polymeric shell carrying mesogenic groups and successfully dispersed in 4-pentyl-4'-cyanobiphenyl (5CB) to form a stable ferronematic phase at ambient concentration up to ∼1 vol%, as shown by DSC and Abbé refractometry. The magneto-optic response is detected in planar aligned LC cells. As compared to undoped 5CB, the hybrid system shows a significantly increased magnetic sensitivity, and the magneto-nematic surface anchoring is quantified by analysis of the magneto-nematic cross-correlation.

8.
Chemistry ; 25(25): 6362-6377, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-30762256

RESUMEN

In recent years, liquid crystals (LCs) responding to light or electrical fields have gained significant importance as multifunctional materials. Herein, two new series of photoswitchable bent-core liquid crystals (BCLCs) derived from 4-cyanoresorcinol as the central core connected to an azobenzene based wing and a phenyl benzoate wing are reported. The self-assembly of these molecules was characterized by differential scanning calorimetry (DSC), polarizing light microscopy (POM), electro-optical, dielectric, second harmonic generation (SHG) studies, and XRD. Depending on the direction of the COO group in the phenyl benzoate wing, core-fluorination, temperature, and the terminal alkyl chain length, cybotactic nematic and lamellar (smectic) LC phases were observed. The coherence length of the ferroelectric fluctuations increases continuously with decreasing temperature and adopts antipolar correlation upon the condensation into superparaelectric states of the paraelectric smectic phases. Finally, long-range polar order develops at distinct phase transitions; first leading to polarization modulated and then to nonmodulated antiferroelectric smectic phases. Conglomerates of chiral domains were observed in the high permittivity ranges of the synclinic tilted paraelectric smectic phases of these achiral molecules, indicating mirror symmetry breaking. Fine-tuning of the molecular structure leads to photoresponsive bent-core (BC)LCs exhibiting a fast and reversible photoinduced change of the mode of the switching between ferroelectric- and antiferroelectric-like as well as a light-induced switching between an achiral and a spontaneous mirror-symmetry-broken LC phase.

9.
Soft Matter ; 15(44): 9018-9030, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31675052

RESUMEN

The dynamics of magnetic nanoparticles in rotating magnetic fields is studied both experimentally and theoretically. The experimental investigation is focused on the conversion of the magnetic forces to a mechanical torque acting on a ferrofluid confined in a spherical cavity in a rotating magnetic field. Polydispersity usually present in diluted ferrofluids is shown to play a crucial role in the torque conversion. Important features observed experimentally are reproduced theoretically in studies on the dynamics of particles with uniaxial magnetic anisotropy in the presence of thermal noise. The phase lag between the rotating magnetic field and the induced rotating magnetization, as well as the corresponding torque which is transferred to the carrier fluid because of the mutual coupling between both, is analyzed as a function of the particle size. It is shown that for large particles the magnetic moment is locked to the anisotropy axis. On lowering the particle radius, Néel relaxation becomes increasingly important. Illustrative numerical calculations demonstrating this behavior are performed for magnetic parameters typical for iron oxide.

10.
Soft Matter ; 15(18): 3788-3795, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30990220

RESUMEN

We investigate the structure and the magnetooptical response of isotropic and anisotropic fibrillous organoferrogels with mobile magnetic nanoparticles (MNPs). We demonstrate that the presence of the gel network restricts the magnetooptical response of the ferrogel. Even though the ferrogel exhibits no magnetic hysteresis, an optical hysteresis has been found. This suggests that the magnetooptical response is primarily determined by the dynamics of self-assembly of the MNPs into shape-anisotropic agglomerates. Furthermore, we show that the optical anisotropy of the system can be fine-tuned by varying the concentration of the gelator and the MNPs, respectively. The optical response in structurally anisotropic gels becomes orientation-dependent, revealing an intricate interplay between the gel mesh and the MNPs.

11.
Soft Matter ; 15(40): 8156-8163, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31595938

RESUMEN

Droplet arrays in thin, freely suspended liquid-crystalline smectic A films can form two-dimensional (2D) colloids. The droplets interact repulsively, arranging locally in a more or less hexagonal arrangement with only short-range spatial and orientational correlations and local lattice cell parameters that depend on droplet size. In contrast to quasi-2D colloids described earlier, there is no 3D bulk liquid subphase that affects the hydrodynamics. Although the films are surrounded by air, the droplet dynamics are genuinely 2D, the mobility of each droplet in its six-neighbor cage being determined by the ratio of cage and droplet sizes, rather than by the droplet size as in quasi-2D colloids. These experimental observations are described well by Saffman's model of a diffusing particle in a finite 2D membrane. The experiments were performed in microgravity, on the International Space Station.

12.
Langmuir ; 34(48): 14519-14527, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30253102

RESUMEN

We report on the structure and optical manipulation of the director configurations in emulsions of liquid-crystalline droplets of a compound exhibiting the nematic (N) and the twist-bend nematic (NTB) phases. We demonstrate a decrease in the ratio of the bent elastic constant K33 to the splay constant K11 by nearly 2 orders of magnitude with decreasing temperature in the N phase. The director structures in liquid-crystal droplets doped with a photoswitchable surfactant without and under ultraviolet (UV) light are discussed in light of the strong elastic anisotropy of the investigated compound. We also compare our findings with the results obtained in doped nematic droplets of a conventional 4-cyano-4'-pentylbiphenyl (5CB) liquid crystal. The dynamics of droplets in the NTB phase by UV light irradiation are also studied using polarizing and confocal microscopies.

13.
Proc Natl Acad Sci U S A ; 112(6): 1716-20, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25624507

RESUMEN

A small amount of azo-dendrimer molecules dissolved in a liquid crystal enables translational and rotational motions of microrods in a liquid crystal matrix under unpolarized UV light irradiation. This motion is initiated by a light-induced trans-to-cis conformational change of the dendrimer adsorbed at the rod surface and the associated director reorientation. The bending direction of the cis conformers is not random but is selectively chosen due to the curved local director field in the vicinity of the dendrimer-coated surface. Different types of director distortions occur around the rods, depending on their orientations with respect to the nematic director field. This leads to different types of motions driven by the torques exerted on the particles by the director reorientations.

14.
Phys Chem Chem Phys ; 19(8): 5895-5905, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28177000

RESUMEN

A new bent-core liquid crystalline material consisting of a 4-cyanoresorcinol unit with two terephthalate based rod-like wings and terminated by two short alkyl chains was synthesized. Its liquid crystalline (LC) self-assembly and the development of polar order in the LC phases were investigated. The polar order is characterised using second harmonic generation and dielectric spectroscopy techniques in addition to XRD and DSC characterisations of the mesophase structure and investigation of freely suspended films. We demonstrate the growth of ferroelectric domains in the paraelectric SmA phase (SmAPR), which adopt antipolar correlations (SmAPAR) and eventually condense into a weakly tilted antiferroelectric smectic phase (SmCaPA).

15.
Phys Chem Chem Phys ; 19(11): 7597-7606, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28252118

RESUMEN

We systematically studied the photoinduced anchoring transition in a nematic liquid crystal containing azo dendrimers. Because the azo dendrimers in the trans-isomer state were spontaneously adsorbed at substrate surfaces, which was confirmed by optical second-harmonic generation (SHG), a homeotropic orientation was established at the first stage. Ultraviolet (UV) light irradiation triggered a transition into a planar state which was accompanied by a suppression of the SH generation. The monotonic decrease of the effective scalar order parameter with increasing UV light intensity was determined by polarized attenuated total reflection infrared (ATR-IR) spectroscopy. The variation of anchoring strength and extrapolation length was evaluated by observing the Fréedericksz transition as a function of UV light intensity at a certain visible (VIS) light intensity. Such a photoinduced variation can be interpreted as a variation of the anchoring strength depending on the trans/cis ratio at the surfaces based on a modified Rapini-Papoular model. Thus, this system provides the opportunity for a controlled change in the anchoring strength.

16.
Phys Chem Chem Phys ; 19(19): 12127-12135, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28447080

RESUMEN

Magnetic nanoparticles (MNPs) functionalized with (pro-)mesogenic ligands are implemented into a nematic liquid crystal (LC) and studied regarding both colloidal stability and magneto-optical behavior. In this study, the particle surface is specifically engineered to tune the MNP interactions with the LC host. For this purpose, four types of (pro-)mesogenic ligands (ML) are synthesized, which are composed of three structural parts, i.e., a rigid, LC motif (i.e., cyanobiphenyl) and a functional group for nanoparticle binding, both linked via a flexible spacer of different alkyl chain lengths. Electrostatically stabilized CoFe2O4 and γ-Fe2O3 nanoparticles with narrow size distribution and sizes below 3 nm are obtained via co-precipitation and subsequently functionalized to yield MNP@ML nanoparticles. Studies on the behaviour of the MNP@ML nanoparticles in the commercial LC host (i.e., 4-pentyl-4'-cyanobiphenyl (5CB)) in the bulk and in thin films in LC test cells, reveal the initial formation of some heterogeneities after transition from the isotropic to the nematic phase. Homogenous MNP@ML-5CB hybrids with long-term, colloidal stability, however, are obtained after magnetic separation of initially formed particle aggregates. In particular, MLs with carboxy groups and high structural flexibility (i.e., long linker lengths) are shown to be well suited to form stable MNP colloids, allowing for high MNP doping levels. As compared to undoped 5CB, the CoFe2O4@MLx-5CB hybrids show an increased sensitivity to the magnetic field, affecting the Fréedericksz transition. The strongest effect, however, is observed in magnetic and electric fields. The coupling of the ultrasmall, spherical MNPs with the LC director in the magnetic field suggests the formation of LC-induced, anisometric MNP clusters.

17.
Chemistry ; 22(24): 8181-97, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27143620

RESUMEN

Two isomeric achiral bent-core liquid crystals involving a 4-cyanoresorcinol core and containing a carbosilane unit as nanosegregating segment were synthesized and were shown to form ferroelectric liquid-crystalline phases. Inversion of the direction of one of the COO groups in these molecules leads to a distinct distribution of the electrostatic potential along the surface of the molecule and to a strong change of the molecular dipole moments. Thus, a distinct degree of segregation of the carbosilane units and consequent modification of the phase structure and coherence length of polar order result. For the compound with larger dipole moment (CN1) segregation of the carbosilane units is suppressed, and this compound forms paraelectric SmA and SmC phases; polar order is only achieved after transition to a new LC phase, namely, the ferroelectric leaning phase (SmCLs PS ) with the unique feature that tilt direction and polar direction coincide. The isomeric compound CN2 with a smaller dipole moment forms separate layers of the carbosilane groups and shows a randomized polar SmA phase (SmAPAR ) and ferroelectric polydomain SmCs PS phases with orthogonal combination of tilt and polar direction and much higher polarizations. Thus, surprisingly, the compound with the smaller molecular dipole moment shows increased polar order in the LC phases. Besides ferroelectricity, mirror-symmetry breaking with formation of a conglomerate of macroscopic chiral domains was observed in one of the SmC phases of CN1. These investigations contribute to the general understanding of the development of polar order and chirality in soft matter.

18.
Chemphyschem ; 17(2): 278-87, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26581648

RESUMEN

A bent-core mesogen consisting of a 4-cyanoresorcinol unit as the central core and laterally fluorinated azobenzene wings forms four different smectic LC phase structures in the sequence SmA-SmCs -SmCs PAR -M, all involving polar SmCs PS domains with growing coherence length of tilt and polar order on decreasing temperature. The SmA phase is a cluster-type de Vries phase with randomized tilt and polar direction; in the paraelectric SmCs phase the tilt becomes uniform, although polar order is still short-range. Increasing polar correlation leads to a new tilted and randomized polar smectic phase with antipolar correlation between the domains (SmCs PAR ) which then transforms into a viscous polar mesophase M. As another interesting feature, spontaneous symmetry breaking by formation of a conglomerate of chiral domains is observed in the non-polar paraelectric SmCs phase.

19.
Langmuir ; 32(20): 5085-93, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27119202

RESUMEN

Using experiments and molecular dynamics simulations, we explore magnetic field-induced phase transformations in suspensions of nonmagnetic rodlike and magnetic sphere-shaped particles. We experimentally demonstrate that an external uniform magnetic field causes the formation of small, stable clusters of magnetic particles that, in turn, induce and control the orientational order of the nonmagnetic subphase. Optical birefringence was studied as a function of the magnetic field and the volume fractions of each particle type. Steric transfer of the orientational order was investigated by molecular dynamics (MD) simulations; the results are in qualitative agreement with the experimental observations. By reproducing the general experimental trends, the MD simulation offers a cohesive bottom-up interpretation of the physical behavior of such systems, and it can also be regarded as a guide for further experimental research.

20.
Opt Express ; 22(17): 20087-93, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25321218

RESUMEN

We report here the optical manipulation of the director and topological defect structures of nematic liquid crystals around a silica microparticle with azobenzene-containing dendrimers (azo-dendrimers) on its surface. We successfully demonstrate the successive switching processes from hedgehog, to boojum, and further to Saturn ring configurations by ultraviolet (UV) light irradiation and termination. The switching time between these defect structures depends on the UV light intensity and attains about 50 ms. Since the pretreatment of microparticles is not necessary and the surface modification is spontaneously performed just by dissolving the azo-dendrimers in liquid crystals, this dendrimer supplies us with a variety of possible applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA