Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Circulation ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873770

RESUMEN

BACKGROUND: Endothelial cell (EC) apoptosis and proliferation of apoptosis-resistant cells is a hallmark of pulmonary hypertension (PH). Yet, why some ECs die and others proliferate and how this contributes to vascular remodeling is unclear. We hypothesized that this differential response may: (1) relate to different EC subsets, namely pulmonary artery (PAECs) versus microvascular ECs (MVECs); (2) be attributable to autophagic activation in both EC subtypes; and (3) cause replacement of MVECs by PAECs with subsequent distal vessel muscularization. METHODS: EC subset responses to chronic hypoxia were assessed by single-cell RNA sequencing of murine lungs. Proliferative versus apoptotic responses, activation, and role of autophagy were assessed in human and rat PAECs and MVECs, and in precision-cut lung slices of wild-type mice or mice with endothelial deficiency in the autophagy gene Atg7 (Atg7EN-KO). Abundance of PAECs versus MVECs in precapillary microvessels was assessed in lung tissue from patients with PH and animal models on the basis of structural or surface markers. RESULTS: In vitro and in vivo, PAECs proliferated in response to hypoxia, whereas MVECs underwent apoptosis. Single-cell RNA sequencing analyses support these findings in that hypoxia induced an antiapoptotic, proliferative phenotype in arterial ECs, whereas capillary ECs showed a propensity for cell death. These distinct responses were prevented in hypoxic Atg7EN-KO mice or after ATG7 silencing, yet replicated by autophagy stimulation. In lung tissue from mice, rats, or patients with PH, the abundance of PAECs in precapillary arterioles was increased, and that of MVECs reduced relative to controls, indicating replacement of microvascular by macrovascular ECs. EC replacement was prevented by genetic or pharmacological inhibition of autophagy in vivo. Conditioned medium from hypoxic PAECs yet not MVECs promoted pulmonary artery smooth muscle cell proliferation and migration in a platelet-derived growth factor-dependent manner. Autophagy inhibition attenuated PH development and distal vessel muscularization in preclinical models. CONCLUSIONS: Autophagic activation by hypoxia induces in parallel PAEC proliferation and MVEC apoptosis. These differential responses cause a progressive replacement of MVECs by PAECs in precapillary pulmonary arterioles, thus providing a macrovascular context that in turn promotes pulmonary artery smooth muscle cell proliferation and migration, ultimately driving distal vessel muscularization and the development of PH.

2.
Anesthesiology ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39042042

RESUMEN

BACKGROUND: As a mechanosensitive cation channel and key regulator of vascular barrier function, endothelial transient receptor potential vanilloid-type 4 (TRPV4) contributes critically to ventilator-induced lung injury (VILI) and edema formation. Ca2+ influx via TRPV4 can activate Ca2+-activated K + (KCa) channels, categorized into small (SK1-3), intermediate (IK1), and big (BK) KCa, which may in turn amplify Ca2+ influx by increasing the electrochemical Ca2+ gradient and thus, promote lung injury. We therefore hypothesized that endothelial KCa channels may contribute to the progression of TRPV4-mediated VILI. METHODS: Male C57Bl/6J mice were ventilated for 2 h with low or high tidal volumes in the presence or absence of the non-selective KCa antagonists apamin, charybdotoxin, or the selective IK1 antagonist TRAM34. Lung injury was similarly assessed in overventilated, endothelial-specific TRPV4-deficient mice or TRAM34-treated C57Bl/6J mice challenged with intratracheal acid installation. Changes in endothelial Ca2+ concentration ([Ca2+]i) were monitored by real-time imaging in isolated-perfused lungs in response to airway pressure elevation or in human pulmonary microvascular endothelial cells (HPMECs) in response to TRPV4 activation with or without inhibition of KCa channels. Analogously, changes in intracellular potassium concentration ([K+]i) and membrane potential (Vm) were imaged in vitro. RESULTS: Endothelial TRPV4 deficiency or inhibition of KCa channels, and most prominently inhibition of IK1 by TRAM34 attenuated VILI as demonstrated by reduced lung edema, protein leak, and by quantitative lung histology. All KCa antagonists reduced the [Ca2+]i response to mechanical stimulation or direct TRPV4 activation in isolated lungs. TRAM34 and charybdotoxin, yet not apamin prevented TRPV4-induced K+ efflux and membrane hyperpolarization in HPMECs. TRAM34 also attenuated the TRPV4 agonist-induced Ca2+ influx in vitro and reduced acid-induced lung injury in vivo. CONCLUSIONS: KCa channels, specifically IK1, act as amplifiers of TRPV4-mediated Ca2+ influx and establish a detrimental feedback that promotes barrier failure and drives the progression of VILI.

3.
Eur Respir J ; 60(4)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35450969

RESUMEN

BACKGROUND: Prostaglandin E2 (PGE2) increases pulmonary vascular permeability by activation of the PGE2 receptor 3 (EP3), which may explain adverse pulmonary effects of the EP1/EP3 receptor agonist sulprostone in patients. In addition, PGE2 contributes to pulmonary oedema in response to platelet-activating factor (PAF). PAF increases endothelial permeability by recruiting the cation channel transient receptor potential canonical 6 (TRPC6) to endothelial caveolae via acid sphingomyelinase (ASMase). Yet, the roles of PGE2 and EP3 in this pathway are unknown. We hypothesised that EP3 receptor activation may increase pulmonary vascular permeability by activation of TRPC6, and thus, synergise with ASMase-mediated TRPC6 recruitment in PAF-induced lung oedema. METHODS: In isolated lungs, we measured increases in endothelial calcium (ΔCa2+) or lung weight (Δweight), and endothelial caveolar TRPC6 abundance as well as phosphorylation. RESULTS: PAF-induced ΔCa2+ and Δweight were attenuated in EP3-deficient mice. Sulprostone replicated PAF-induced ΔCa2+ and Δweight which were blocked by pharmacological/genetic inhibition of TRPC6, ASMase or Src-family kinases (SrcFK). PAF, but not sulprostone, increased TRPC6 abundance in endothelial caveolae. Immunoprecipitation revealed PAF- and sulprostone-induced tyrosine-phosphorylation of TRPC6 that was prevented by inhibition of phospholipase C (PLC) or SrcFK. PLC inhibition also blocked sulprostone-induced ΔCa2+ and Δweight, as did inhibition of SrcFK or inhibitory G-protein (Gi) signalling. CONCLUSIONS: EP3 activation triggers pulmonary oedema via Gi-dependent activation of PLC and subsequent SrcFK-dependent tyrosine phosphorylation of TRPC6. In PAF-induced lung oedema, this TRPC6 activation coincides with ASMase-dependent caveolar recruitment of TRPC6, resulting in rapid endothelial Ca2+ influx and barrier failure.


Asunto(s)
Edema Pulmonar , Animales , Calcio/metabolismo , Edema , Células Endoteliales/metabolismo , Proteínas de Unión al GTP/metabolismo , Pulmón/metabolismo , Ratones , Factor de Activación Plaquetaria , Esfingomielina Fosfodiesterasa , Canal Catiónico TRPC6 , Fosfolipasas de Tipo C/metabolismo , Tirosina , Familia-src Quinasas
4.
Eur Respir J ; 57(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32764118

RESUMEN

Epidemiological data from the SARS-CoV-2 outbreak suggest sex differences in mortality and vulnerability; however, sex-dependent incidence of acute respiratory distress syndrome (ARDS) remains controversial and the sex-dependent mechanisms of endothelial barrier regulation are unknown. In premenopausal women, increased signalling of angiotensin (Ang)(1-7) via the Mas receptor has been linked to lower cardiovascular risk. Since stimulation of the Ang(1-7)/Mas axis protects the endothelial barrier in acute lung injury (ALI), we hypothesised that increased Ang(1-7)/Mas signalling may protect females over males in ALI/ARDS.Clinical data were collected from Charité inpatients (Berlin) and sex differences in ALI were assessed in wild-type (WT) and Mas-receptor deficient (Mas-/- ) mice. Endothelial permeability was assessed as weight change in isolated lungs and as transendothelial electrical resistance (TEER) in vitroIn 734 090 Charité inpatients (2005-2016), ARDS had a higher incidence in men as compared to women. In murine ALI, male WT mice had more lung oedema, protein leaks and histological evidence of injury than female WT mice. Lung weight change in response to platelet-activating factor (PAF) was more pronounced in male WT and female Mas-/- mice than in female WT mice, whereas Mas-receptor expression was higher in female WT lungs. Ovariectomy attenuated protection in female WT mice and reduced Mas-receptor expression. Oestrogen increased Mas-receptor expression and attenuated endothelial leakage in response to thrombin in vitro This effect was alleviated by Mas-receptor blockade.Improved lung endothelial barrier function protects female mice from ALI-induced lung oedema. This effect is partially mediated via enhanced Ang(1-7)/Mas signalling as a result of oestrogen-dependent Mas expression.


Asunto(s)
Lesión Pulmonar Aguda/genética , Angiotensina I/metabolismo , COVID-19/epidemiología , Permeabilidad Capilar/genética , Endotelio Vascular/metabolismo , Estrógenos/metabolismo , Pulmón/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas/genética , Receptores Acoplados a Proteínas G/genética , Síndrome de Dificultad Respiratoria/epidemiología , Lesión Pulmonar Aguda/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Angiotensina I/farmacología , Enzima Convertidora de Angiotensina 2 , Animales , Permeabilidad Capilar/efectos de los fármacos , Niño , Impedancia Eléctrica , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Estradiol/farmacología , Femenino , Humanos , Técnicas In Vitro , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Ovariectomía , Fragmentos de Péptidos/farmacología , Factor de Activación Plaquetaria/farmacología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , SARS-CoV-2 , Distribución por Sexo , Factores Sexuales , Regulación hacia Arriba , Adulto Joven
5.
J Physiol ; 597(4): 997-1021, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30015354

RESUMEN

The pulmonary epithelial and vascular endothelial cell layers provide two sequential physical and immunological barriers that together form a semi-permeable interface and prevent alveolar and interstitial oedema formation. In this review, we focus specifically on the continuous endothelium of the pulmonary microvascular bed that warrants strict control of the exchange of gases, fluid, solutes and circulating cells between the plasma and the interstitial space. The present review provides an overview of emerging molecular mechanisms that permit constant transcellular exchange between the vascular and interstitial compartment, and cause, prevent or reverse lung endothelial barrier failure under experimental conditions, yet with a clinical perspective. Based on recent findings and at times seemingly conflicting results we discuss emerging paradigms of permeability regulation by altered ion transport as well as shifts in the homeostasis of sphingolipids, angiopoietins and prostaglandins.


Asunto(s)
Barrera Alveolocapilar , Endotelio Vascular/fisiología , Microcirculación , Circulación Pulmonar , Animales , Endotelio Vascular/metabolismo , Humanos , Transcitosis
7.
Anesthesiology ; 126(2): 300-311, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27861175

RESUMEN

BACKGROUND: Mechanical ventilation can cause lung endothelial barrier failure and inflammation cumulating in ventilator-induced lung injury. Yet, underlying mechanotransduction mechanisms remain unclear. Here, the authors tested the hypothesis that activation of the mechanosensitive Ca channel transient receptor potential vanilloid (TRPV4) by serum glucocorticoid-regulated kinase (SGK) 1 may drive the development of ventilator-induced lung injury. METHODS: Mice (total n = 54) were ventilated for 2 h with low (7 ml/kg) or high (20 ml/kg) tidal volumes and assessed for signs of ventilator-induced lung injury. Isolated-perfused lungs were inflated with continuous positive airway pressures of 5 or 15 cm H2O (n = 7 each), and endothelial calcium concentration was quantified by real-time imaging. RESULTS: Genetic deficiency or pharmacologic inhibition of TRPV4 or SGK1 protected mice from overventilation-induced vascular leakage (reduction in alveolar protein concentration from 0.84 ± 0.18 [mean ± SD] to 0.46 ± 0.16 mg/ml by TRPV4 antagonization), reduced lung inflammation (macrophage inflammatory protein 2 levels of 193 ± 163 in Trpv4 vs. 544 ± 358 pmol/ml in wild-type mice), and attenuated endothelial calcium responses to lung overdistension. Functional coupling of TRPV4 and SGK1 in lung endothelial mechanotransduction was confirmed by proximity ligation assay demonstrating enhanced TRPV4 phosphorylation at serine 824 at 18% as compared to 5% cyclic stretch, which was prevented by SGK1 inhibition. CONCLUSIONS: Lung overventilation promotes endothelial calcium influx and barrier failure through a mechanism that involves activation of TRPV4, presumably due to phosphorylation at its serine 824 residue by SGK1. TRPV4 and SGK1 may present promising new targets for prevention or treatment of ventilator-induced lung injury.


Asunto(s)
Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Respiración Artificial/efectos adversos , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Animales , Western Blotting , Modelos Animales de Enfermedad , Pulmón/metabolismo , Masculino , Mecanotransducción Celular , Ratones , Ratones Endogámicos C57BL , Canales Catiónicos TRPV/economía , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo
8.
Am J Respir Cell Mol Biol ; 54(3): 370-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26222277

RESUMEN

The cation channel transient receptor potential vanilloid (TRPV) 4 is expressed in endothelial and immune cells; however, its role in acute lung injury (ALI) is unclear. The functional relevance of TRPV4 was assessed in vivo, in isolated murine lungs, and in isolated neutrophils. Genetic deficiency of TRPV4 attenuated the functional, histological, and inflammatory hallmarks of acid-induced ALI. Similar protection was obtained with prophylactic administration of the TRPV4 inhibitor, GSK2193874; however, therapeutic administration of the TRPV4 inhibitor, HC-067047, after ALI induction had no beneficial effect. In isolated lungs, platelet-activating factor (PAF) increased vascular permeability in lungs perfused with trpv4(+/+) more than with trpv4(-/-) blood, independent of lung genotype, suggesting a contribution of TRPV4 on blood cells to lung vascular barrier failure. In neutrophils, TRPV4 inhibition or deficiency attenuated the PAF-induced increase in intracellular calcium. PAF induced formation of epoxyeicosatrienoic acids by neutrophils, which, in turn, stimulated TRPV4-dependent Ca(2+) signaling, whereas inhibition of epoxyeicosatrienoic acid formation inhibited the Ca(2+) response to PAF. TRPV4 deficiency prevented neutrophil responses to proinflammatory stimuli, including the formation of reactive oxygen species, neutrophil adhesion, and chemotaxis, putatively due to reduced activation of Rac. In chimeric mice, however, the majority of protective effects in acid-induced ALI were attributable to genetic deficiency of TRPV4 in parenchymal tissue, whereas TRPV4 deficiency in circulating blood cells primarily reduced lung myeloperoxidase activity. Our findings identify TRPV4 as novel regulator of neutrophil activation and suggest contributions of both parenchymal and neutrophilic TRPV4 in the pathophysiology of ALI.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Activación Neutrófila , Neutrófilos/metabolismo , Canales Catiónicos TRPV/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/prevención & control , Animales , Trasplante de Médula Ósea , Señalización del Calcio , Permeabilidad Capilar , Modelos Animales de Enfermedad , Humanos , Ácido Clorhídrico , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Masculino , Ratones Noqueados , Morfolinas/farmacología , Activación Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neumonía/metabolismo , Edema Pulmonar/metabolismo , Pirroles/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
9.
Crit Care Med ; 41(11): e334-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23949470

RESUMEN

OBJECTIVES: Recently, recombinant angiotensin-converting enzyme 2 was shown to protect mice from acute lung injury, an effect attributed to reduced bioavailability of angiotensin II. Since angiotensin-converting enzyme 2 metabolizes angiotensin II to angiotensin-(1-7), we hypothesized that this effect is alternatively mediated by angiotensin-(1-7) and activation of its receptor(s). DESIGN: To test this hypothesis, we investigated the effects of intravenously infused angiotensin-(1-7) in three experimental models of acute lung injury. SETTING: Animal research laboratory. SUBJECTS: Male Sprague-Dawley rats, Balb/c mice, and C57Bl6/J mice. INTERVENTIONS: Angiotensin-(1-7) was administered with ventilator- or acid aspiration-induced lung injury in mice or 30 minutes after oleic acid infusion in rats. In vitro, the effect of angiotensin-(1-7) on transendothelial electrical resistance of human pulmonary microvascular endothelial cells was analyzed. MEASUREMENTS AND MAIN RESULTS: Infusion of angiotensin-(1-7) starting 30 minutes after oleic acid administration protected rats from acute lung injury as evident by reduced lung edema, myeloperoxidase activity, histological lung injury score, and pulmonary vascular resistance while systemic arterial pressure was stabilized. Such effects were largely reproduced by the nonpeptidic angiotensin-(1-7) analog AVE0991. Infusion of angiotensin-(1-7) was equally protective in murine models of ventilator- or acid aspiration-induced lung injury. In the oleic acid model, the two distinct angiotensin-(1-7) receptor blockers A779 and D-Pro-angiotensin-(1-7) reversed the normalizing effects of angiotensin-(1-7) on systemic and pulmonary hemodynamics, but only D-Pro-angiotensin-(1-7) blocked the protection from lung edema and protein leak, whereas A779 restored the infiltration of neutrophils. Rats were also protected from acute lung injury by the AT1 antagonist irbesartan; however, this effect was again blocked by A779 and D-Pro-angiotensin-(1-7). In vitro, angiotensin-(1-7) protected pulmonary microvascular endothelial cells from thrombin-induced barrier failure, yet D-Pro-angiotensin-(1-7) or NO synthase inhibition blocked this effect. CONCLUSIONS: Angiotensin-(1-7) or its analogs attenuate the key features of acute lung injury and may present a promising therapeutic strategy for the treatment of this disease.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Angiotensina I/farmacología , Fragmentos de Péptidos/farmacología , Receptores de Angiotensina/metabolismo , Lesión Pulmonar Aguda/fisiopatología , Angiotensina II/análogos & derivados , Angiotensina II/farmacología , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Compuestos de Bifenilo/farmacología , Impedancia Eléctrica , Células Endoteliales , Hemodinámica , Imidazoles/farmacología , Irbesartán , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Mecánica Respiratoria , Tetrazoles/farmacología
10.
Matrix Biol ; 114: 67-83, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456058

RESUMEN

Shedding of hyaluronan (HA), the component of endothelial cell (EC) glycocalyx, has been associated with acute lung injury. HA degradation allows plasma proteins and fluid to penetrate across the vascular wall leading to lung edema formation and leukocyte recruitment. Here, we analyzed sHA levels and size in patients with community-acquired pneumonia (CAP) and acute respiratory distress syndrome (ARDS), correlated them to disease severity, and evaluated the impact of pneumolysin (PLY), the Streptococcus pneumoniae (S.p.) exotoxin, on HA shedding from human pulmonary microvascular EC (HPMVEC). sHA levels were elevated in CAP and ARDS and correlated with the CRB65 severity score and with markers of inflammation (interleukin-6), EC activation (E-selectin), and basement membrane destruction (collagen IV). Furthermore, sHA levels were associated with an increase in 28-day mortality. Small and large sHA fragments were detected in plasma of most severe CAP or ARDS patients, and the presence of large sHA fragments was accompanied by the elevated levels of circulating collagen IV. In vitro, PLY induced sHA release from HPMVEC. This effect was dependent on reactive oxygen species (ROS) production and was not associated with endothelial barrier dysfunction. Conversely, HA shedding was impaired following HPMVEC infection with a S.p. PLY-deficient mutant. Our study identifies association between the severity of CAP and ARDS and the levels and size of sHA in plasma. It links sHA levels with, inflammation, EC activation status and basement membrane disassembly in ARDS and provides insights into the mechanism of HA shedding during infection.


Asunto(s)
Neumonía , Síndrome de Dificultad Respiratoria , Humanos , Ácido Hialurónico , Inflamación , Colágeno Tipo IV
11.
Sci Transl Med ; 14(674): eabg8577, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36475904

RESUMEN

Pneumonia is the most common cause of the acute respiratory distress syndrome (ARDS). Here, we identified loss of endothelial cystic fibrosis transmembrane conductance regulator (CFTR) as an important pathomechanism leading to lung barrier failure in pneumonia-induced ARDS. CFTR was down-regulated after Streptococcus pneumoniae infection ex vivo or in vivo in human or murine lung tissue, respectively. Analysis of isolated perfused rat lungs revealed that CFTR inhibition increased endothelial permeability in parallel with intracellular chloride ion and calcium ion concentrations ([Cl-]i and [Ca2+]i). Inhibition of the chloride ion-sensitive with-no-lysine kinase 1 (WNK1) protein with tyrphostin 47 or WNK463 replicated the effect of CFTR inhibition on endothelial permeability and endothelial [Ca2+]i, whereas WNK1 activation by temozolomide attenuated it. Endothelial [Ca2+]i transients and permeability in response to inhibition of either CFTR or WNK1 were prevented by inhibition of the cation channel transient receptor potential vanilloid 4 (TRPV4). Mice deficient in Trpv4 (Trpv4-/-) developed less lung edema and protein leak than their wild-type littermates after infection with S. pneumoniae. The CFTR potentiator ivacaftor prevented lung CFTR loss, edema, and protein leak after S. pneumoniae infection in wild-type mice. In conclusion, lung infection caused loss of CFTR that promoted lung edema formation through intracellular chloride ion accumulation, inhibition of WNK1, and subsequent disinhibition of TRPV4, resulting in endothelial calcium ion influx and vascular barrier failure. Ivacaftor prevented CFTR loss in the lungs of mice with pneumonia and may, therefore, represent a possible therapeutic strategy in people suffering from ARDS due to severe pneumonia.


Asunto(s)
Cloruros , Neumonía , Humanos , Ratones , Animales , Calcio , Pulmón , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Canales Catiónicos TRPV
12.
Hypertension ; 74(2): 295-304, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31291149

RESUMEN

Subendocardial damage is among the first cardiac manifestations of hypertension and is already present in asymptomatic disease states. Accordingly, markers of subendocardial impairment may facilitate early detection of cardiac damages and risk stratification under these conditions. This study aimed to investigate the impact of subendocardial damage on myocardial microstructure and function to elucidate early pathophysiologic processes and to identify corresponding diagnostic measures. Mice (n=38) were injected with isoproterenol to induce isolated subendocardial scarring or saline as corresponding control. Cardiac function and myocardial deformation were determined by high-frequency echocardiography. The cardiac stress response was assessed in a graded exercise test and during dobutamine stress echocardiography. Myocardial microstructure was studied ex vivo by 7 T diffusion tensor magnetic resonance imaging at a spatial resolution of 100×100×100 µm 3 . Results were correlated with histology and biomarker expression. Subendocardial fibrosis was accompanied by diastolic dysfunction, impaired longitudinal deformation (global peak longitudinal strain [LS]: -12.5±0.5% versus -15.6±0.5%; P<0.001) and elevated biomarker expression (ANP [atrial natriuretic peptide], Galectin-3, and ST2). Systolic function and cardiac stress response remained preserved. Diffusion tensor magnetic resonance imaging revealed a left-shift in helix angle towards lower values in isoproterenol-treated animals, which was mainly determined by subepicardial myofibers (mean helix angle: 2.2±0.8° versus 5.9±1.0°; P<0.01). Longitudinal strain and subepicardial helix angle were highly predictive for subendocardial fibrosis (sensitivity, 82%-92% and specificity, 89%-90%). The results indicate that circumscribed subendocardial damage alone can cause several hallmarks observed in cardiovascular high-risk patients. Microstructural remodeling under these conditions involves also remote regions, and corresponding changes in longitudinal strain and helix angle might serve as diagnostic markers.


Asunto(s)
Endocardio/patología , Interpretación de Imagen Asistida por Computador , Isoproterenol/efectos adversos , Imagen por Resonancia Cinemagnética/métodos , Disfunción Ventricular Izquierda/diagnóstico por imagen , Animales , Biopsia con Aguja , Modelos Animales de Enfermedad , Ecocardiografía/métodos , Endocardio/diagnóstico por imagen , Endocardio/lesiones , Fibrosis/diagnóstico por imagen , Fibrosis/patología , Alemania , Humanos , Inmunohistoquímica , Inyecciones Subcutáneas , Isoproterenol/administración & dosificación , Modelos Lineales , Ratones , Ratones Endogámicos , Curva ROC , Distribución Aleatoria , Valores de Referencia , Volumen Sistólico/fisiología , Análisis de Supervivencia , Disfunción Ventricular Izquierda/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA