Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 315(1): E63-E71, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351479

RESUMEN

An increased contribution of de novo lipogenesis (DNL) may play a role in cases of dyslipidemia and adipose accretion; this suggests that inhibition of fatty acid synthesis may affect clinical phenotypes. Since it is not clear whether modulation of one step in the lipogenic pathway is more important than another, the use of tracer methods can provide a deeper level of insight regarding the control of metabolic activity. Although [2H]water is generally considered a reliable tracer for quantifying DNL in vivo (it yields a homogenous and quantifiable precursor labeling), the relatively long half-life of body water is thought to limit the ability of performing repeat studies in the same subjects; this can create a bottleneck in the development and evaluation of novel therapeutics for inhibiting DNL. Herein, we demonstrate the ability to perform back-to-back studies of DNL using [2H]water. However, this work uncovered special circumstances that affect the data interpretation, i.e., it is possible to obtain seemingly negative values for DNL. Using a rodent model, we have identified a physiological mechanism that explains the data. We show that one can use [2H]water to test inhibitors of DNL by performing back-to-back studies in higher species [i.e., treat nonhuman primates with platensimycin, an inhibitor of fatty acid synthase]; studies also demonstrate the unsuitability of [13C]acetate.


Asunto(s)
Óxido de Deuterio/farmacología , Ácido Palmítico/sangre , Acetatos/sangre , Adipogénesis , Animales , Femenino , Semivida , Lipogénesis/efectos de los fármacos , Macaca mulatta , Masculino , Ratones Endogámicos C57BL
2.
J Biol Chem ; 291(45): 23428-23439, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27621313

RESUMEN

Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Mutación , Insuficiencia Renal/genética , Síndrome de Wolff-Parkinson-White/genética , Animales , Apoptosis , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Inflamación/genética , Inflamación/patología , Riñón/metabolismo , Riñón/patología , Masculino , Ratones Endogámicos C57BL , Insuficiencia Renal/patología , Síndrome de Wolff-Parkinson-White/patología
3.
J Pharmacol Exp Ther ; 363(1): 80-91, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28724692

RESUMEN

Drug discovery and development efforts are largely based around a common expectation, namely, that direct or indirect action on a cellular process (e.g., statin-mediated enzyme inhibition or insulin-stimulated receptor activation) will have a beneficial impact on physiologic homeostasis. To expand on this, one could argue that virtually all pharmacologic interventions attempt to influence the flow of "traffic" in a biochemical network, irrespective of disease or modality. Since stable isotope tracer kinetic methods provide a measure of traffic flow (i.e., metabolic flux), their inclusion in study designs can yield novel information regarding pathway biology; the application of such methods requires the integration of knowledge in physiology, analytical chemistry, and mathematical modeling. Herein, we review the fundamental concepts that surround the use of tracer kinetics, define basic terms, and outline guiding principles via theoretical and experimental problems. Specifically, one needs to 1) recognize the types of biochemical events that change isotopic enrichments, 2) appreciate the distinction between fractional turnover and flux rate, and 3) be aware of the subtle differences between tracer kinetics and pharmacokinetics. We hope investigators can use the framework presented here to develop applications that address their specific questions surrounding biochemical flux, and thereby gain insight into the pathophysiology of disease states, and examine pharmacodynamic mechanisms.


Asunto(s)
Descubrimiento de Drogas/métodos , Análisis de Flujos Metabólicos/métodos , Animales , Humanos , Marcaje Isotópico , Isótopos/química , Agua/química , Agua/metabolismo
4.
Am J Physiol Endocrinol Metab ; 311(6): E911-E921, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27651111

RESUMEN

Aberrant regulation of glucose production makes a critical contribution to the impaired glycemic control that is observed in type 2 diabetes. Although isotopic tracer methods have proven to be informative in quantifying the magnitude of such alterations, it is presumed that one must rely on venous access to administer glucose tracers which therein presents obstacles for the routine application of tracer methods in rodent models. Since intraperitoneal injections are readily used to deliver glucose challenges and/or dose potential therapeutics, we hypothesized that this route could also be used to administer a glucose tracer. The ability to then reliably estimate glucose flux would require attention toward setting a schedule for collecting samples and choosing a distribution volume. For example, glucose production can be calculated by multiplying the fractional turnover rate by the pool size. We have taken a step-wise approach to examine the potential of using an intraperitoneal tracer administration in rat and mouse models. First, we compared the kinetics of [U-13C]glucose following either an intravenous or an intraperitoneal injection. Second, we tested whether the intraperitoneal method could detect a pharmacological manipulation of glucose production. Finally, we contrasted a potential application of the intraperitoneal method against the glucose-insulin clamp. We conclude that it is possible to 1) quantify glucose production using an intraperitoneal injection of tracer and 2) derive a "glucose production index" by coupling estimates of basal glucose production with measurements of fasting insulin concentration; this yields a proxy for clamp-derived assessments of insulin sensitivity of endogenous production.


Asunto(s)
Glucemia/metabolismo , Indicadores y Reactivos , Animales , Glucemia/efectos de los fármacos , Isótopos de Carbono , Dieta Alta en Grasa , Femenino , Técnica de Clampeo de la Glucosa , Hipoglucemiantes/farmacología , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Resistencia a la Insulina , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Proyectos Piloto , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Rosiglitazona , Tiazolidinedionas/farmacología
5.
J Lipid Res ; 56(11): 2183-95, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26373568

RESUMEN

Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism.


Asunto(s)
Colesterol/sangre , Pirazoles/farmacología , Receptores de Glucagón/antagonistas & inhibidores , beta-Alanina/análogos & derivados , Animales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Hipercolesterolemia/inducido químicamente , Concentración 50 Inhibidora , Absorción Intestinal , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Pirazoles/efectos adversos , beta-Alanina/efectos adversos , beta-Alanina/farmacología
6.
Nat Commun ; 13(1): 942, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177603

RESUMEN

Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g. hypoglycemia) of injectable insulin continue to limit the true therapeutic potential of related agents. Insulin dimers were synthesized to investigate whether partial agonism of the insulin receptor (IR) tyrosine kinase is achievable, and to explore the potential for tissue-selective systemic insulin pharmacology. The insulin dimers induced distinct IR conformational changes compared to native monomeric insulin and substrate phosphorylation assays demonstrated partial agonism. Structurally distinct dimers with differences in conjugation sites and linkers were prepared to deliver desirable IR partial agonist (IRPA). Systemic infusions of a B29-B29 dimer in vivo revealed sharp differences compared to native insulin. Suppression of hepatic glucose production and lipolysis were like that attained with regular insulin, albeit with a distinctly shallower dose-response. In contrast, there was highly attenuated stimulation of glucose uptake into muscle. Mechanistic studies indicated that IRPAs exploit tissue differences in receptor density and have additional distinctions pertaining to drug clearance and distribution. The hepato-adipose selective action of IRPAs is a potentially safer approach for treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hipoglucemiantes/farmacología , Insulina/farmacología , Receptor de Insulina/agonistas , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Aloxano/administración & dosificación , Aloxano/toxicidad , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Células CHO , Cricetulus , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/metabolismo , Células HEK293 , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Lipólisis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratas , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Transducción de Señal/efectos de los fármacos , Porcinos , Porcinos Enanos
7.
J Med Chem ; 65(7): 5593-5605, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35298158

RESUMEN

We have identified a series of novel insulin receptor partial agonists (IRPAs) with a potential to mitigate the risk of hypoglycemia associated with the use of insulin as an antidiabetic treatment. These molecules were designed as dimers of native insulin connected via chemical linkers of variable lengths with optional capping groups at the N-terminals of insulin chains. Depending on the structure, the maximal activation level (%Max) varied in the range of ∼20-70% of native insulin, and EC50 values remained in sub-nM range. Studies in minipig and dog demonstrated that IRPAs had sufficient efficacy to normalize plasma glucose levels in diabetes, while providing reduction of hypoglycemia risk. IRPAs had a prolonged duration of action, potentially making them suitable for once-daily dosing. Two lead compounds with %Max values of 30 and 40% relative to native insulin were selected for follow up studies in the clinic.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemia , Animales , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Perros , Hipoglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Receptor de Insulina , Porcinos , Porcinos Enanos , Índice Terapéutico
8.
J Am Chem Soc ; 133(21): 8059-61, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21545145

RESUMEN

Standard molecular mechanics (MM) force fields predict a nearly linear decrease in hydration free energy with each successive addition of a methyl group to ammonia or acetamide, whereas a nonadditive relationship is observed experimentally. In contrast, the non-additive hydration behavior is reproduced directly using a quantum mechanics (QM)/MM-based free-energy perturbation (FEP) method wherein the solute partial atomic charges are updated at every window. Decomposing the free energies into electrostatic and van der Waals contributions and comparing the results with the corresponding free energies obtained using a conventional FEP method and a QM/MM method wherein the charges are not updated suggests that inaccuracies in the electrostatic free energies are the primary reason for the inability of the conventional FEP method to predict the experimental findings. The QM/MM-based FEP method was subsequently used to evaluate inhibitors of the diabetes drug target fructose-1,6-bisphosphatase adenosine 5'-monophosphate and 6-methylamino purine riboside 5'-monophosphate. The predicted relative binding free energy was consistent with the experimental findings, whereas the relative binding free energy predicted using the conventional FEP method differed from the experimental finding by an amount consistent with the overestimated relative solvation free energies calculated for alkylamines. Accordingly, the QM/MM-based FEP method offers potential advantages over conventional FEP methods, including greater accuracy and reduced user input. Moreover, since drug candidates often contain either functionality that is inadequately treated by MM (e.g., simple alkylamines and alkylamides) or new molecular scaffolds that require time-consuming development of MM parameters, these advantages could enable future automation of FEP calculations as well as greatly increase the use and impact of FEP calculations in drug discovery.


Asunto(s)
Acetamidas/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Fructosa-Bifosfatasa/antagonistas & inhibidores , Metilaminas/química , Adenosina Monofosfato/química , Simulación por Computador , Humanos , Inosina Monofosfato/análogos & derivados , Inosina Monofosfato/química , Simulación de Dinámica Molecular , Teoría Cuántica , Termodinámica
9.
Antimicrob Agents Chemother ; 55(8): 3854-60, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21628542

RESUMEN

Hepatitis C virus (HCV) infects an estimated 170 million individuals worldwide, and the current standard of care, a combination of pegylated interferon alpha and ribavirin, is efficacious in achieving sustained viral response in ~50% of treated patients. Novel therapies under investigation include the use of nucleoside analog inhibitors of the viral RNA-dependent RNA polymerase. NM283, a 3'-valyl ester prodrug of 2'-C-methylcytidine, has demonstrated antiviral efficacy in HCV-infected patients (N. Afdhal et al., J. Hepatol. 46[Suppl. 1]:S5, 2007; N. Afdhal et al., J. Hepatol. 44[Suppl. 2]:S19, 2006). One approach to increase the antiviral efficacy of 2'-C-methylcytidine is to increase the concentration of the active inhibitory species, the 5'-triphosphate, in infected hepatocytes. HepDirect prodrug technology can increase intracellular concentrations of a nucleoside triphosphate in hepatocytes by introducing the nucleoside monophosphate into the cell, bypassing the initial kinase step that is often rate limiting. Screening for 2'-C-methylcytidine triphosphate levels in rat liver after oral dosing identified 1-[3,5-difluorophenyl]-1,3-propandiol as an efficient prodrug modification. To determine antiviral efficacy in vivo, the prodrug was administered separately via oral and intravenous dosing to two HCV-infected chimpanzees. Circulating viral loads declined by ~1.4 log(10) IU/ml and by >3.6 log(10) IU/ml after oral and intravenous dosing, respectively. The viral loads rebounded after the end of dosing to predose levels. The results indicate that a robust antiviral response can be achieved upon administration of the prodrug.


Asunto(s)
Citidina/análogos & derivados , Hepacivirus/efectos de los fármacos , Hepatitis C/tratamiento farmacológico , Profármacos/administración & dosificación , Animales , Antivirales/administración & dosificación , Antivirales/farmacología , Antivirales/uso terapéutico , Citidina/administración & dosificación , Citidina/farmacología , Citidina/uso terapéutico , Citidina Monofosfato/administración & dosificación , Citidina Monofosfato/análogos & derivados , Citidina Monofosfato/farmacología , Citidina Monofosfato/uso terapéutico , Femenino , Hepatitis C/virología , Hepatocitos/metabolismo , Macaca mulatta , Masculino , Pan troglodytes , Profármacos/farmacología , Profármacos/uso terapéutico , Nucleósidos de Pirimidina/administración & dosificación , Nucleósidos de Pirimidina/farmacología , Nucleósidos de Pirimidina/uso terapéutico , Ratas , Ratas Sprague-Dawley , Carga Viral/efectos de los fármacos
10.
Handb Exp Pharmacol ; (203): 279-301, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21484576

RESUMEN

Fructose-1,6-bisphosphatase (FBPase), a rate-controlling enzyme of gluconeogenesis, has emerged as an important target for the treatment of type 2 diabetes due to the well-recognized role of excessive endogenous glucose production (EGP) in the hyperglycemia characteristic of the disease. Inhibitors of FBPase are expected to fulfill an unmet medical need because the majority of current antidiabetic medications act primarily on insulin resistance or insulin insufficiency and do not reduce gluconeogenesis effectively or in a direct manner. Despite significant challenges, potent and selective inhibitors of FBPase targeting the allosteric site of the enzyme were identified by means of a structure-guided design strategy that used the natural inhibitor, adenosine monophosphate (AMP), as the starting point. Oral delivery of these anionic FBPase inhibitors was enabled by a novel diamide prodrug class. Treatment of diabetic rodents with CS-917, the best characterized of these prodrugs, resulted in a reduced rate of gluconeogenesis and EGP. Of note, inhibition of gluconeogenesis by CS-917 led to the amelioration of both fasting and postprandial hyperglycemia without weight gain, incidence of hypoglycemia, or major perturbation of lactate or lipid homeostasis. Furthermore, the combination of CS-917 with representatives of the insulin sensitizer or insulin secretagogue drug classes provided enhanced glycemic control. Subsequent clinical evaluations of CS-917 revealed a favorable safety profile as well as clinically meaningful reductions in fasting glucose levels in patients with T2DM. Future trials of MB07803, a second generation FBPase inhibitor with improved pharmacokinetics, will address whether this novel class of antidiabetic agents can provide safe and long-term glycemic control.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Fructosa-Bifosfatasa/antagonistas & inhibidores , Gluconeogénesis/efectos de los fármacos , Glucosa/biosíntesis , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Alanina/efectos adversos , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Animales , Humanos , Organofosfonatos , Compuestos Organofosforados/efectos adversos , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/uso terapéutico , Transducción de Señal/efectos de los fármacos
11.
Hepatology ; 49(2): 407-17, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19072834

RESUMEN

UNLABELLED: Non-alcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease, with a prevalence ranging from 10% to 30%. The use of thyroid hormone receptor (TR) agonists for the treatment of NAFLD has not been considered viable because thyroid hormones increase free fatty acid (FFA) flux from the periphery to the liver, induce hepatic lipogenesis, and therefore could potentially cause steatosis. MB07811 is an orally active HepDirect prodrug of MB07344, a liver-targeted TR-beta agonist. The purpose of these studies was to assess the effects of MB07811 on whole body and liver lipid metabolism of normal rodents and rodent models of hepatic steatosis. In the current studies, MB07811 markedly reduced hepatic steatosis as well as reduced plasma FFA and triglycerides. In contrast to MB07811, T(3) induced adipocyte lipolysis in vitro and in vivo and had a diminished ability to decrease hepatic steatosis. This suggests the influx of FFA from the periphery to the liver may partially counteract the antisteatotic activity of T(3). Clearance of liver lipids by MB07811 results from accelerated hepatic fatty acid oxidation, a known consequence of hepatic TR activation, as reflected by increased hepatic mitochondrial respiration rates, changes in hepatic gene expression, and increased plasma acyl-carnitine levels. Transaminase levels remained unchanged, or were reduced, and no evidence for liver fibrosis or other histological liver damage was observed after treatment with MB07811 for up to 10 weeks. Additionally, MB07811, unlike T(3), did not increase heart weight or decrease pituitary thyroid-stimulating hormone beta (TSHbeta) expression. CONCLUSION: MB07811 represents a novel class of liver-targeted TR agonists with beneficial low-density lipoprotein cholesterol-lowering properties that may provide additional therapeutic benefit to hyperlipidemic patients with concomitant NAFLD.


Asunto(s)
Hígado Graso/tratamiento farmacológico , Receptores de Hormona Tiroidea/agonistas , Acetatos/uso terapéutico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Citocromo P-450 CYP3A/metabolismo , Epidídimo , Ácidos Grasos no Esterificados/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Fenoles/uso terapéutico , Éteres Fenílicos/uso terapéutico , Fenilacetatos/uso terapéutico , Ratas , Ratas Sprague-Dawley
12.
J Comput Aided Mol Des ; 23(12): 837-43, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19760106

RESUMEN

Molecular dynamics (MD) simulations in conjunction with thermodynamic perturbation approach was used to calculate relative solvation free energies of five pairs of small molecules, namely; (1) methanol to ethane, (2) acetone to acetamide, (3) phenol to benzene, (4) 1,1,1 trichloroethane to ethane, and (5) phenylalanine to isoleucine. Two studies were performed to evaluate the dependence of the convergence of these calculations on MD simulation length and starting configuration. In the first study, each transformation started from the same well-equilibrated configuration and the simulation length was varied from 230 to 2,540 ps. The results indicated that for transformations involving small structural changes, a simulation length of 860 ps is sufficient to obtain satisfactory convergence. In contrast, transformations involving relatively large structural changes, such as phenylalanine to isoleucine, require a significantly longer simulation length (>2,540 ps) to obtain satisfactory convergence. In the second study, the transformation was completed starting from three different configurations and using in each case 860 ps of MD simulation. The results from this study suggest that performing one long simulation may be better than averaging results from three different simulations using a shorter simulation length and three different starting configurations.


Asunto(s)
Simulación por Computador , Simulación de Dinámica Molecular , Termodinámica , Acetamidas/química , Acetona/química , Benceno/química , Etano/química , Isoleucina/química , Metanol/química , Conformación Molecular , Fenol/química , Fenilalanina/química , Teoría Cuántica , Solubilidad , Tricloroetanos/química
13.
Cell Metab ; 29(4): 837-843.e5, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30773465

RESUMEN

The gut hormone PYY3-36 reduces food intake in humans and exhibits at least additive efficacy in combination with GLP-1. However, the utility of PYY analogs as anti-obesity agents has been severely limited by emesis and rapid proteolysis, a profile similarly observed with native PYY3-36 in obese rhesus macaques. Here, we found that antibody conjugation of a cyclized PYY3-36 analog achieved high NPY2R selectivity, unprecedented in vivo stability, and gradual infusion-like exposure. These properties permitted profound reduction of food intake when administered to macaques for 23 days without a single emetic event in any animal. Co-administration with the GLP-1 receptor agonist liraglutide for an additional 5 days further reduced food intake with only one animal experiencing a single bout of emesis. This antibody-conjugated PYY analog therefore may enable the long-sought potential of GLP-1/PYY-based combination treatment to achieve robust, well-tolerated weight reduction in obese patients.


Asunto(s)
Anorexia/inducido químicamente , Péptido YY/química , Péptido YY/farmacología , Vómitos , Animales , Células CHO , Cricetulus , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células HEK293 , Humanos , Liraglutida/farmacología , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Péptido YY/administración & dosificación , Vómitos/inducido químicamente
15.
PLoS One ; 14(2): e0211568, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30811418

RESUMEN

Physical activity promotes metabolic and cardiovascular health benefits that derive in part from the transcriptional responses to exercise that occur within skeletal muscle and other organs. There is interest in discovering a pharmacologic exercise mimetic that could imbue wellness and alleviate disease burden. However, the molecular physiology by which exercise signals the transcriptional response is highly complex, making it challenging to identify a single target for pharmacological mimicry. The current studies evaluated the transcriptome responses in skeletal muscle, heart, liver, and white and brown adipose to novel small molecule activators of AMPK (pan-activators for all AMPK isoforms) compared to that of exercise. A striking level of congruence between exercise and pharmacological AMPK activation was observed across the induced transcriptome of these five tissues. However, differences in acute metabolic response between exercise and pharmacologic AMPK activation were observed, notably for acute glycogen balances and related to the energy expenditure induced by exercise but not pharmacologic AMPK activation. Nevertheless, intervention with repeated daily administration of short-acting activation of AMPK was found to mitigate hyperglycemia and hyperinsulinemia in four rodent models of metabolic disease and without the cardiac glycogen accretion noted with sustained pharmacologic AMPK activation. These findings affirm that activation of AMPK is a key node governing exercise mediated transcription and is an attractive target as an exercise mimetic.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Animales , Metabolismo Energético , Activación Enzimática/efectos de los fármacos , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Homeostasis , Ratones Endogámicos C57BL , Oxidación-Reducción , Condicionamiento Físico Animal
16.
Science ; 365(6451): 386-392, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31273070

RESUMEN

Ceramides contribute to the lipotoxicity that underlies diabetes, hepatic steatosis, and heart disease. By genetically engineering mice, we deleted the enzyme dihydroceramide desaturase 1 (DES1), which normally inserts a conserved double bond into the backbone of ceramides and other predominant sphingolipids. Ablation of DES1 from whole animals or tissue-specific deletion in the liver and/or adipose tissue resolved hepatic steatosis and insulin resistance in mice caused by leptin deficiency or obesogenic diets. Mechanistic studies revealed ceramide actions that promoted lipid uptake and storage and impaired glucose utilization, none of which could be recapitulated by (dihydro)ceramides that lacked the critical double bond. These studies suggest that inhibition of DES1 may provide a means of treating hepatic steatosis and metabolic disorders.


Asunto(s)
Ceramidas/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Resistencia a la Insulina/genética , Proteínas de la Membrana/genética , Oxidorreductasas/genética , Animales , Ceramidas/química , Ceramidas/genética , Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Leptina/deficiencia , Ratones , Ratones Mutantes , Esfingolípidos/química , Esfingolípidos/metabolismo
17.
J Med Chem ; 51(3): 666-76, 2008 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-18173234

RESUMEN

Adefovir dipivoxil, a marketed drug for the treatment of hepatitis B, is dosed at submaximally efficacious doses because of renal toxicity. In an effort to improve the therapeutic index of adefovir, 1-aryl-1,3-propanyl prodrugs were synthesized with the rationale that this selectively liver-activated prodrug class would enhance liver levels of the active metabolite adefovir diphosphate (ADV-DP) and/or decrease kidney exposure. The lead prodrug (14, MB06866, pradefovir), identified from a variety of in vitro and in vivo assays, exhibited good oral bioavailability (F = 42%, mesylate salt, rat) and rate of prodrug conversion to ADV-DP. Tissue distribution studies in the rat using radiolabeled materials showed that cyclic 1-aryl-1,3-propanyl prodrugs enhance the delivery of adefovir and its metabolites to the liver, with pradefovir exhibiting a 12-fold improvement in the liver/kidney ratio over adefovir dipivoxil.


Asunto(s)
Adenina/análogos & derivados , Hígado/metabolismo , Organofosfonatos/síntesis química , Compuestos Organofosforados/síntesis química , Adenina/administración & dosificación , Adenina/síntesis química , Adenina/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Perros , Hepatocitos/metabolismo , Técnicas In Vitro , Masculino , Microsomas Hepáticos/metabolismo , Organofosfonatos/administración & dosificación , Organofosfonatos/farmacocinética , Compuestos Organofosforados/administración & dosificación , Compuestos Organofosforados/farmacocinética , Profármacos , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Relación Estructura-Actividad , Distribución Tisular
18.
Drug Metab Dispos ; 36(11): 2393-403, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18703645

RESUMEN

The prodrug [(2R,4S)-4-(3-chlorophenyl)-2-[(3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl)phenoxy)methyl]-2-oxido-[1,3,2]-dioxaphosphonane (MB07811)] of a novel phosphonate-containing thyroid hormone receptor agonist [3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl)phenoxylmethylphosphonic acid (MB07344)] is the first application of the HepDirect liver-targeting approach to a non-nucleotide agent. The disposition of MB07811 was characterized in rat, dog, and monkey to assess its liver specificity, which is essential in limiting the extrahepatic side effects associated with this class of lipid-lowering agents. MB07811 was converted to MB07344 in liver microsomes from all species tested (CL(int) 1.23-145.4 microl/min/mg). The plasma clearance and volume of distribution of MB07811 matched or exceeded 1 l/h/kg and 3 l/kg, respectively. Although absorption of prodrug was good, its absolute oral bioavailability as measured systemically was low (3-10%), an indication of an extensive hepatic first-pass effect. This effect was confirmed by comparison of systemic exposure levels of MB07811 after portal and jugular vein administration to rats, which demonstrated a hepatic extraction ratio of >0.6 with liver CYP3A-mediated conversion to MB07344 being a major component. The main route of elimination of MB07811 and MB07344 was biliary, with no evidence for enterohepatic recirculation of MB07344. Similar metabolic profiles of MB07811 were obtained in liver microsomes across the species tested. Tissue distribution and whole body autoradiography confirmed that the liver is the major target organ of MB07811 and that conversion to MB07344 was high in the liver relative to that in other tissues. Hepatic first-pass extraction and metabolism of MB07811, coupled with possible selective distribution of MB07811-derived MB07344, led to a high degree of liver targeting of MB07344.


Asunto(s)
Organofosfonatos/farmacocinética , Profármacos/farmacocinética , Receptores de Hormona Tiroidea/agonistas , Receptores de Hormona Tiroidea/metabolismo , Animales , Perros , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos ICR , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Organofosfonatos/administración & dosificación , Profármacos/administración & dosificación , Conejos , Ratas , Ratas Sprague-Dawley
19.
JCI Insight ; 3(1)2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29321379

RESUMEN

Hypoglycemia is commonly associated with insulin therapy, limiting both its safety and efficacy. The concept of modifying insulin to render its glucose-responsive release from an injection depot (of an insulin complexed exogenously with a recombinant lectin) was proposed approximately 4 decades ago but has been challenging to achieve. Data presented here demonstrate that mannosylated insulin analogs can undergo an additional route of clearance as result of their interaction with endogenous mannose receptor (MR), and this can occur in a glucose-dependent fashion, with increased binding to MR at low glucose. Yet, these analogs retain capacity for binding to the insulin receptor (IR). When the blood glucose level is elevated, as in individuals with diabetes mellitus, MR binding diminishes due to glucose competition, leading to reduced MR-mediated clearance and increased partitioning for IR binding and consequent glucose lowering. These studies demonstrate that a glucose-dependent locus of insulin clearance and, hence, insulin action can be achieved by targeting MR and IR concurrently.


Asunto(s)
Glucosa/metabolismo , Hipoglucemia/tratamiento farmacológico , Insulina/farmacología , Animales , Antígenos CD , Glucemia , Línea Celular , Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Hipoglucemiantes/farmacología , Lectinas Tipo C/efectos de los fármacos , Hígado/patología , Macrófagos , Masculino , Receptor de Manosa , Lectinas de Unión a Manosa/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratas , Receptor de Insulina/efectos de los fármacos , Receptores de Superficie Celular/efectos de los fármacos
20.
J Am Chem Soc ; 129(50): 15480-90, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18041833

RESUMEN

AMP binding sites are commonly used by nature for allosteric regulation of enzymes controlling the production and metabolism of carbohydrates and lipids. Since many of these enzymes represent potential drug targets for metabolic diseases, efforts were initiated to discover AMP mimics that bind to AMP-binding sites with high affinity and high enzyme specificity. Herein we report the structure-guided design of potent fructose 1,6-bisphosphatase (FBPase) inhibitors that interact with the AMP binding site on FBPase despite their structural dissimilarity to AMP. Molecular modeling, free-energy perturbation calculations, X-ray crystallography, and enzyme kinetic data guided our redesign of AMP, which began by replacing the 5'-phosphate with a phosphonic acid attached to C8 of the adenine base via a 3-atom spacer. Additional binding affinity was gained by replacing the ribose with an alkyl group that formed van der Waals interactions with a hydrophobic region within the AMP binding site and by replacing the purine nitrogens N1 and N3 with carbons to minimize desolvation energy expenditures. The resulting benzimidazole phosphonic acid, 16, inhibited human FBPase (IC50 = 90 nM) 11-fold more potently than AMP and exhibited high specificity for the AMP binding site on FBPase. 16 also inhibited FBPase in primary rat hepatocytes and correspondingly resulted in concentration-dependent inhibition of the gluconeogenesis pathway. Accordingly, these results suggest that the AMP site of FBPase may represent a potential drug target for reducing the excessive glucose produced by the gluconeogenesis pathway in patients with type 2 diabetes.


Asunto(s)
Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Fructosa-Bifosfatasa/antagonistas & inhibidores , Imitación Molecular , Adenosina Monofosfato/síntesis química , Animales , Sitios de Unión , Células Cultivadas , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Fructosa-Bifosfatasa/metabolismo , Glucosa/biosíntesis , Humanos , Cinética , Plomo/química , Modelos Moleculares , Estructura Molecular , Purinas/química , Ratas , Sensibilidad y Especificidad , Estereoisomerismo , Relación Estructura-Actividad , Especificidad por Sustrato , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA