Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arch Microbiol ; 206(4): 191, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520490

RESUMEN

Escherichia coli are generally resistant to the lantibiotic's action (nisin and warnerin), but we have shown increased sensitivity of E. coli to lantibiotics in the presence of subinhibitory concentrations of polymyxins. Synergistic lantibiotic-polymyxin combinations were found for polymyxins B and M. The killing of cells at the planktonic and biofilm levels was observed for two collection and four clinical multidrug-resistant E. coli strains after treatment with lantibiotic-polymyxin B combinations. Thus, 24-h treatment of E. coli mature biofilms with warnerin-polymyxin B or nisin-polymyxin B leads to five to tenfold decrease in the number of viable cells, depending on the strain. AFM revealed that the warnerin and polymyxin B combination caused the loss of the structural integrity of biofilm and the destruction of cells within the biofilm. It has been shown that pretreatment of cells with polymyxin B leads to an increase of Ca2+ and Mg2+ ions in the culture medium, as detected by atomic absorption spectroscopy. The subsequent exposure to warnerin caused cell death with the loss of K+ ions and cell destruction with DNA and protein release. Thus, polymyxins display synergy with lantibiotics against planktonic and biofilm cells of E. coli, and can be used to overcome the resistance of Gram-negative bacteria to lantibiotics.


Asunto(s)
Bacteriocinas , Nisina , Polimixinas/farmacología , Polimixina B/farmacología , Antibacterianos/farmacología , Nisina/farmacología , Escherichia coli/genética , Plancton , Bacteriocinas/farmacología , Biopelículas , Iones , Pruebas de Sensibilidad Microbiana
2.
Can J Microbiol ; 65(12): 895-903, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31479619

RESUMEN

Bacteriocins are antimicrobial peptides, produced by Gram-positive bacteria such as lactococci and staphylococci, that have limited bactericidal action against Gram-negative bacteria. The aim of this paper was to study the sensitivity of three strains of Escherichia coli to bacteriocins: nisin (as Nisaplin®) and two staphylococcal peptides (warnerin and hominin) during sucrose-induced osmotic stress. We found that all peptides in a 0.3 g·mL-1 sucrose solution significantly reduced the number of viable E. coli. The most pronounced antibacterial effect was achieved by nisin against E. coli K-12 (3 log reduction). Slightly less bactericidal effects were observed with warnerin (1 mg·mL-1) and hominin (1 mg·mL-1) in sucrose solution. The lytic activity of staphylococcal peptides was detected by decreased optical density and viable cell counts. Moreover, it was confirmed by the increased amount of DNA and protein in the medium and the morphological changes detected by atomic force microscopy after 20 h of treatment. Zymographic analysis revealed the release of lytic enzymes from E. coli cells after treatment with staphylococcal peptides and sucrose. These results indicated that the antimicrobial action of peptides can be extended to Gram-negative bacteria via combination with high concentrations of sucrose.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Escherichia coli/efectos de los fármacos , Presión Osmótica , Sacarosa/farmacología , Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Bacteriólisis/efectos de los fármacos , Bacterias Grampositivas/metabolismo , Viabilidad Microbiana/efectos de los fármacos
3.
Bioorg Med Chem Lett ; 28(23-24): 3752-3760, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30340899

RESUMEN

A set of ß-ketoesters was synthesized from 2,3-seco-18αH-oleanane and 2,3-secolupane bromomethyl ketones. Additionally, hydroxy derivatives with the A-seco- or five-membered A ring were obtained as a result of the reduction or of alkaline hydrolysis of acetic acid ß-ketoesters 4, 9. Cytotoxic screening revealed the compound 4 with marked activity (IC50 3.07-3.61 µM) against the HCT 116, MS, RD TE32 cancer cells. The studies of the cytotoxic mechanism enabled elucidating the fact that treatment of the HCT 116 cells with compound 4 for 18 h leads to induction of apoptosis in a dose-dependent manner. This observation was confirmed by registration of chromatin condensation, by the fluorescence increased during Annexin V-FITC staining, and by appearance of a sub-G0 peak in the cell cycle analysis with DAPI. Compound 4 also inhibited migration of cancer cells in the wound healing assay.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Triterpenos/química , Triterpenos/farmacología , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Esterificación , Células HCT116 , Humanos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Triterpenos/síntesis química
4.
Microb Pathog ; 105: 145-152, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28237766

RESUMEN

N-Acetylcysteine (NAC) is a non-antibiotic drug with antimicrobial properties against biofilm phenotypes of Gram-positive and Gram-negative bacteria. Our aim was to assess the effects of NAC on the growth of Gram-positive human skin and mucous membrane pathogens in the planktonic and biofilm phases. The minimum inhibitory concentrations (MICs) of NAC against Enterococcus faecalis, Corynebacterium ammoniagenes, Mycobacterium smegmatis, Propionibacterium acnes, Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes, and 14 clinical strains of coagulase-negative staphylococci (CNS) ranged from 0.098 to 25 mg/ml. We found that at sub-MICs of NAC the adherence of E. faecalis, S. epidermidis, and nine CNS strains significantly reduced. However, biofilm formation of E. faecalis, S. aureus and two CNS strains increased at sub-MICs of NAC. Furthermore, a dose-related decrease in biofilm formation of C. ammoniagenes, M. smegmatis, P. acnes, S. pyogenes, and S. epidermidis was observed. The effect of NAC on planktonic growth and biofilm formation of the M. smegmatis cell was also time-dependent. We have selected P. acnes VKM Ac-1450 Rifr strain with total resistance to rifampicin and used this microorganism for multispecies P. acnes - S. epidermidis biofilm model. The biofilm formation and growth of mixed culture of P. acnes and S. epidermidis was significantly slowed at 12.5 mg/ml of NAC. NAC also has a higher disruptive effect on both mature M. smegmatis and mixed P. acnes - S. epidermidis biofilm. Thus, NAC appears to be a promising, non-antibiotic alternative to prevent biofilm-associated infections.


Asunto(s)
Acetilcisteína/farmacología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Piel/microbiología , Adhesinas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/citología , Bacterias Gramnegativas/metabolismo , Bacterias Gramnegativas/fisiología , Infecciones por Bacterias Gramnegativas/microbiología , Bacterias Grampositivas/citología , Bacterias Grampositivas/metabolismo , Bacterias Grampositivas/fisiología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Enfermedades Cutáneas Bacterianas/microbiología
5.
Curr Microbiol ; 70(6): 846-53, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25744155

RESUMEN

The influence of soluble and immobilized plasma, albumin, and fibronectin (Fn) on the adhesion of three Staphylococcus epidermidis strains to polystyrene was investigated. Both soluble and immobilized plasma and albumin cause to 7-fold reduction of the amounts of adhered cells, regardless of the strain used. The soluble Fn exhibited the adhesion for one strain and did not affect the bacterial sorption for remaining strains, whereas on Fn-coated polystyrene two of the three strains showed about 1.5-fold increase in the number of adsorbed bacteria. The plasma- and albumin-coated surfaces became much more hydrophilic as the contact angle changed from 78 ± 2° for control to 18 ± 2° for plasma and 21 ± 3° for albumin. The ligand-receptor specific interactions strains S. epidermidis with Fn-coated surfaces were proved by measuring the adhesion forces between cell surface and Fn-coated AFM tip. The surface roughness measured using AFM after the plasma and proteins immobilization was changed within 10 nm and not correlate with changes in bacterial adhesion.


Asunto(s)
Albúminas/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Fibronectinas/metabolismo , Plasma/metabolismo , Poliestirenos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología
6.
Eur J Med Chem ; 276: 116724, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39079310

RESUMEN

For the first time, a synthetic route for preparing lupane and oleanane derivatives with a hydrogenated furan ring as a cycle A of triterpene scaffold is described. Most of the synthesized compounds, furanoterpenoids and their synthetic intermediates, were non-toxic against the tested cancer and non-cancerous cell lines, and evinced significant inhibitory activity with IC50 1.0-9.0 µM in the tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibition test. Lupane derivatives - 1-oxime 7, 1,10-seco-hydroxynitrile 11 and furanoterpenoid 14 - were selected as those expected to be the most promising compounds. The results of molecular modeling evinced the strongest binding of compound 11 to the active site of Tdp1 compared to the reference drug. Simultaneously, only compound 11 at subtoxic concentration (10 µM) produced a synergetic effect on the topotecan activity against HeLa-V cells.


Asunto(s)
Relación Dosis-Respuesta a Droga , Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas , Triterpenos , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Relación Estructura-Actividad , Triterpenos/farmacología , Triterpenos/química , Triterpenos/síntesis química , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/química , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Furanos/farmacología , Furanos/química , Furanos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Modelos Moleculares , Línea Celular Tumoral , Ácido Betulínico
7.
Biology (Basel) ; 12(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36979107

RESUMEN

Oleanane aldehyde-ß-enone (OA), being the semi-synthetic derivative of the triterpenoid betulin, effectively inhibits the proliferation of HBL-100 and K562 cancer cells (IC50 0.47-0.53 µM), as well as the proliferation of their resistant subclones with high P-gp expression HBL-100/Dox, K562/i-S9 and K562/i-S9_Dox (IC50 0.45-1.24 µM). A molecular docking study, rhodamine efflux test, synergistic test with Dox, and ABC transporter gene expression were used to investigate the ability of OA to act as a P-gp substrate or inhibitor against Dox-resistant cells. We noted a trend toward a decrease in ABCB1, ABCC1 and ABCG2 expression in HBL-100 cells treated with OA. The in silico and in vitro methods suggested that OA is neither a direct inhibitor nor a competitive substrate of P-gp in overexpressing P-gp cancer cells. Thus, OA is able to overcome cellular resistance and can accumulate in Dox-resistant cells to realize toxic effects. The set of experiments suggested that OA toxic action can be attributed to activating intrinsic/extrinsic or only intrinsic apoptosis pathways in Dox-sensitive and Dox-resistant cancer cells, respectively. The cytotoxicity of OA in resistant cells is likely mediated by a mitochondrial cell death pathway, as demonstrated by positive staining with Annexin V-FITC, an increasing number of cells in the subG0/G1 phase, reactive oxygen species generation, mitochondrial dysfunction, cytochrome c migration and caspases-9,-6 activation.

8.
Int J Mycobacteriol ; 10(1): 43-50, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707371

RESUMEN

Background: Nontuberculous mycobacteria (NTM) form two types of biofilms: Bottom biofilm and pellicle. The spatial distribution of cells between these types of biofilms and their dispersion into the liquid medium depends on the ratio of the nutrient components of the growth medium. The inhibition of biofilm formation by NTM can be achieved through the use of lipophilic compounds, such as essential oils (EOs). Method: The biofilm and pellicle formation of Mycobacterium smegmatis and Mycobacterium avium on four nutrient media under static conditions and in the vapors of six EOs was evaluated by conventional method. The antimycobacterial effect of EOs was also studied by the disc diffusion method. Results: The bottom biofilm and pellicle formation of NTM largely depended on the composition and availability of nutrients. Nutrient media in which NTM form powerful bottom biofilm or pellicle or both have been determined. The growth of studied NTM strains on agar was highly sensitive to the EOs of Scots pine, Atlas cedar, bergamot, and a mixture of EO of different plants. The cultivation of bacteria in the EO vapors also resulted in total suppression of the pellicle for all studied NTM strains. Conclusions: Our data clearly indicate that the carbon-nitrogen ratio is involved in the regulation of the spatial distribution of the biofilm. The preventing effect of EOs vapors, especially the synergistic action of mixture of EOs on the biofilm and pellicle formation by NTMs can be observed.


Asunto(s)
Micobacterias no Tuberculosas , Aceites Volátiles , Biopelículas , Mycobacterium avium , Mycobacterium smegmatis , Aceites Volátiles/farmacología
9.
Chem Biol Interact ; 348: 109645, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34516973

RESUMEN

Semi-synthetic A-cycle modified triterpenic derivatives with A-cycle condensed with a heterocyclic fragment (compound 1) and fragmented A-ring (compound 2) were tested for cytotoxicity against several tumor cell cultures and doxorubicin (Dox)-resistant cell lines. The equal cytotoxicity of the tested compounds to the parental tumor cell lines (HBL-100, K562) and their resistant subclones (HBL-100/Dox, K562/i-S9) was revealed. The overexpression of ABCB1 (MDR1) gene and P-glycoprotein (P-gp) was confirmed for both resistant subclones of tumor cells. Compounds 1 and 2 were shown to inhibit the ABC-transporter gene expression (MDR1, MRP, MVP, and BCRP) and the transport of well-known P-gp substrate Rhodamine 123 from resistant cells. The docking of triterpenoids 1 and 2 into the drug binding site of P-gp revealed a similarity between the conformation of the tested triterpenoids and that of classical inhibitor verapamil, thus assuming these compounds to be more likely the inhibitors than the substrates of P-gp. Any tested triterpenic derivatives, when combined at non-toxic concentrations with doxorubicin, improved cytotoxic effect of the therapeutic drug against resistant subclones of tumor cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacología , Línea Celular Tumoral , Humanos , Relación Estructura-Actividad
10.
Int J Mycobacteriol ; 9(2): 156-166, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32474537

RESUMEN

Background: Mycobacterium smegmatis and other nontuberculous mycobacteria (NTM) are widely distributed in the environment, but a significant increase of NTM infections has taken place in the last few decades. The objective of this study was to determine the role of toxin-antitoxin (TA) vapBC and mazEF systems that act as effectors of persistence in the stress response of NTM. Methods: The growth ability and the biofilm formation of NTM were evaluated by conventional methods. Bacterial cell viability was determined using MTT staining, agar plating, or the method of limiting dilutions. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of antibiotics were estimated using broth and agar dilution methods. Results: Despite a comparable growth dynamics and biofilm formation on solid/liquid interface with the wild type, a M. smegmatis vapBC, mazEF, and vapBC × mazEF deletion mutant produced more abundant pellicle and were more susceptible to heat shock. Significant differences were also found in the resistance wild type of NTM to isoniazid and ciprofloxacin reflected by higher MBC/MIC ratios. The proposed method of cultivation of agar blocks without visible growth after MIC determination into a liquid medium allows us to detect transition of all wild type of NTM strains to a dormant state in the presence of subMICs of isoniazid and ciprofloxacin while all deletion mutants failed to form dormant cells. Conclusion: Our data suggest that both vapBC and mazEF TA systems putatively involved in the heat and antibiotic stress response of NTM via their key role in transition to the dormant state.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/fisiología , Sistemas Toxina-Antitoxina/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Mycobacterium smegmatis/efectos de los fármacos
11.
AIMS Microbiol ; 4(1): 165-172, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31294208

RESUMEN

Adhesion and biofilm formation of human skin bacteria C. acnes on plasma, serum and albumin-coated polystyrene or in the presence of these blood components were studied. The proteins which were pre-adsorbed to polystyrene surface or added to the medium simultaneously with bacterial cells reduced C. acnes adhesion and biofilm formation by 2-5 times to compare to the control. The role of calcium, magnesium and zinc on C. acnes attachment was also assessed. Calcium (1 and 10 mM) had the inhibitory effect on C. acnes adhesion, whereas zinc (1 and 10 mM) diminished the biofilm formation of C. acnes. We also observed that C. acnes cells did not bind to erythrocytes. Thus, we suggest that bacteria C. acnes preferably colonize the plasma-poor environment due to the inhibitory effect of blood components, in particular, albumin, calcium, and zinc.

12.
Steroids ; 140: 131-143, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30315840

RESUMEN

Synthetic transformations of steroids for drug discovery and improvement of drug effectiveness have been an important part of modern medicinal chemistry and pharmaceutical sciences. Pentacyclic triterpenoids, being represented in the nature by various structures and biogenetically related to steroids, can largely expand the spectrum of biologically active steroidal agents via synthesis of the so-called "triterpenoid-steroid" hybrids. In the presented work, the nitrile anion cyclizations of 3,4-secolupane and 3,4-seco-oleanane nitriles and follow-up synthetic transformations of the cyclized products with formation of the gemm-dimethyl-free A ring "triterpenoid-steroid" hybrids were studied. Furthermore, the resulting cyclic compounds were modified at C3, C4, and/or C5 positions of ring A, as well as at C20, C28, and C30 positions of the isopropylidene moiety in the case of lupane triterpenoids. The cytotoxic effect of the synthesized compounds against seven cancer cell lines HEp-2, HCT 116, MS, RD TE32, A549, MCF7, and PC3 was evaluated. The in silico identification of potential anticancer protein targets with regard to the compounds, which were active at micromolar concentrations against tested cell lines, was carried out. The molecular docking studies showed that compound 19, which demonstrated most pronounced cytotoxicity (IC50 0.64-3.17 µM) against all tested cell lines, fits well the active sites of CDK6 and HER2/neu.


Asunto(s)
Simulación del Acoplamiento Molecular , Esteroides/química , Triterpenos/química , Triterpenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Dominio Catalítico , Línea Celular Tumoral , Quinasa 6 Dependiente de la Ciclina/química , Quinasa 6 Dependiente de la Ciclina/metabolismo , Humanos , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Relación Estructura-Actividad , Triterpenos/síntesis química , Triterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA