Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Headache Pain ; 25(1): 53, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38584260

RESUMEN

BACKGROUND: Visual snow syndrome is a disorder characterized by the combination of typical perceptual disturbances. The clinical picture suggests an impairment of visual filtering mechanisms and might involve primary and secondary visual brain areas, as well as higher-order attentional networks. On the level of cortical oscillations, the alpha rhythm is a prominent EEG pattern that is involved in the prioritisation of visual information. It can be regarded as a correlate of inhibitory modulation within the visual network. METHODS: Twenty-one patients with visual snow syndrome were compared to 21 controls matched for age, sex, and migraine. We analysed the resting-state alpha rhythm by identifying the individual alpha peak frequency using a Fast Fourier Transform and then calculating the power spectral density around the individual alpha peak (+/- 1 Hz). We anticipated a reduced power spectral density in the alpha band over the primary visual cortex in participants with visual snow syndrome. RESULTS: There were no significant differences in the power spectral density in the alpha band over the occipital electrodes (O1 and O2), leading to the rejection of our primary hypothesis. However, the power spectral density in the alpha band was significantly reduced over temporal and parietal electrodes. There was also a trend towards increased individual alpha peak frequency in the subgroup of participants without comorbid migraine. CONCLUSIONS: Our main finding was a decreased power spectral density in the alpha band over parietal and temporal brain regions corresponding to areas of the secondary visual cortex. These findings complement previous functional and structural imaging data at a electrophysiological level. They underscore the involvement of higher-order visual brain areas, and potentially reflect a disturbance in inhibitory top-down modulation. The alpha rhythm alterations might represent a novel target for specific neuromodulation. TRIAL REGISTRATION: we preregistered the study before preprocessing and data analysis on the platform osf.org (DOI: https://doi.org/10.17605/OSF.IO/XPQHF , date of registration: November 19th 2022).


Asunto(s)
Ritmo alfa , Trastornos Migrañosos , Trastornos de la Percepción , Humanos , Ritmo alfa/fisiología , Estudios de Casos y Controles , Trastornos de la Visión/complicaciones , Electroencefalografía , Percepción Visual/fisiología
2.
Cerebellum ; 22(2): 194-205, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35212978

RESUMEN

Humans are able to estimate head movements accurately despite the short half-life of information coming from our inner ear motion sensors. The observation that the central angular velocity estimate outlives the decaying signal of the semicircular canal afferents led to the concept of a velocity storage mechanism (VSM). The VSM can be activated via visual and vestibular modalities and becomes manifest in ocular motor responses after sustained stimulation like whole-body rotations, optokinetic or galvanic vestibular stimulation (GVS). The VSM has been the focus of many computational modelling approaches; little attention though has been paid to discover its actual structural correlates. Animal studies localized the VSM in the medial and superior vestibular nuclei. A significant modulation by cerebellar circuitries including the uvula and nodulus has been proposed. Nevertheless, the corresponding neuroanatomical structures in humans have not been identified so far. The aim of the present study was to delineate the neural substrates of the VSM using high-resolution infratentorial fMRI with a fast T2* sequence optimized for infratentorial neuroimaging and via video-oculography (VOG). The neuroimaging experiment (n=20) gave first in vivo evidence for an involvement of the vestibular nuclei in the VSM and substantiate a crucial role for cerebellar circuitries. Our results emphasize the importance of cerebellar feedback loops in VSM most likely represented by signal increases in vestibulo-cerebellar hubs like the uvula and nodulus and lobule VIIIA. The delineated activation maps give new insights regarding the function and embedment of Crus I, Crus II, and lobule VII and VIII in the human vestibular system.


Asunto(s)
Vermis Cerebeloso , Vestíbulo del Laberinto , Animales , Humanos , Movimientos Oculares , Imagen por Resonancia Magnética , Cerebelo/fisiología , Vestíbulo del Laberinto/fisiología , Reflejo Vestibuloocular/fisiología
3.
Memory ; 31(10): 1295-1305, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37727126

RESUMEN

Since immersive virtual reality (IVR) emerged as a research method in the 1980s, the focus has been on the similarities between IVR and actual reality. In this vein, it has been suggested that IVR methodology might fill the gap between laboratory studies and real life. IVR allows for high internal validity (i.e., a high degree of experimental control and experimental replicability), as well as high external validity by letting participants engage with the environment in an almost natural manner. Despite internal validity being crucial to experimental designs, external validity also matters in terms of the generalizability of results. In this paper, we first highlight and summarise the similarities and differences between IVR, desktop situations (both non-immersive VR and computer experiments), and reality. In the second step, we propose that IVR is a promising tool for visual memory research in terms of investigating the representation of visual information embedded in natural behaviour. We encourage researchers to carry out experiments on both two-dimensional computer screens and in immersive virtual environments to investigate visual memory and validate and replicate the findings. IVR is valuable because of its potential to improve theoretical understanding and increase the psychological relevance of the findings.


Asunto(s)
Realidad Virtual , Humanos , Memoria , Computadores
4.
Neuroimage ; 264: 119715, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334557

RESUMEN

All volitional movement in a three-dimensional space requires multisensory integration, in particular of visual and vestibular signals. Where and how the human brain processes and integrates self-motion signals remains enigmatic. Here, we applied visual and vestibular self-motion stimulation using fast and precise whole-brain neuroimaging to delineate and characterize the entire cortical and subcortical egomotion network in a substantial cohort (n=131). Our results identify a core egomotion network consisting of areas in the cingulate sulcus (CSv, PcM/pCi), the cerebellum (uvula), and the temporo-parietal cortex including area VPS and an unnamed region in the supramarginal gyrus. Based on its cerebral connectivity pattern and anatomical localization, we propose that this region represents the human homologue of macaque area 7a. Whole-brain connectivity and gradient analyses imply an essential role of the connections between the cingulate sulcus and the cerebellar uvula in egomotion perception. This could be via feedback loops involved updating visuo-spatial and vestibular information. The unique functional connectivity patterns of PcM/pCi hint at central role in multisensory integration essential for the perception of self-referential spatial awareness. All cortical egomotion hubs showed modular functional connectivity with other visual, vestibular, somatosensory and higher order motor areas, underlining their mutual function in general sensorimotor integration.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Humanos , Estimulación Luminosa , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/fisiología , Encéfalo/fisiología
5.
Eur J Neurol ; 29(5): 1514-1523, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35098611

RESUMEN

BACKGROUND AND PURPOSE: We aimed to delineate common principles of reorganization after infarcts of the subcortical vestibular circuitry related to the clinical symptomatology. Our hypothesis was that the recovery of specific symptoms is associated with changes in distinct regions within the core vestibular, somatosensory, and visual cortical and subcortical networks. METHODS: We used voxel- and surface-based morphometry to investigate structural reorganization of subcortical and cortical brain areas in 42 patients with a unilateral, subcortical infarct with vestibular and ocular motor deficits in the acute phase. The patients received structural neuroimaging and clinical monitoring twice (acute phase and after 6 months) to detect within-subject changes over time. RESULTS: In patients with vestibular signs such as tilts of the subjective visual vertical (SVV) and ocular torsion in the acute phase, significant volumetric increases in the superficial white matter around the parieto-opercular (retro-)insular vestibular cortex (PIVC) were found at follow-up. In patients with SVV tilts, spontaneous nystagmus, and rotatory vertigo in the acute phase, gray matter volume decreases were located in the cerebellum and the visual cortex bilaterally at follow-up. Patients with saccade pathology demonstrated volumetric decreases in cerebellar, thalamic, and cortical centers for ocular motor control. CONCLUSIONS: The findings support the role of the PIVC as the key hub for vestibular processing and reorganization. The volumetric decreases represent the reciprocal interaction of the vestibular, visual, and ocular motor systems during self-location and egomotion detection. A modulation in vestibular and ocular motor as well as visual networks was induced independently of the vestibular lesion site.


Asunto(s)
Vestíbulo del Laberinto , Sustancia Blanca , Encéfalo/patología , Corteza Cerebral , Infarto Cerebral/patología , Humanos , Vértigo
6.
Neuroimage ; 176: 354-363, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29702184

RESUMEN

Multisensory convergence and sensorimotor integration are important aspects for the mediation of higher vestibular cognitive functions at the cortical level. In contrast to the integration of vestibulo-visual or vestibulo-tactile perception, much less is known about the neural mechanism that mediates the integration of vestibular-otolith (linear acceleration/translation/gravity detection) and auditory processing. Vestibular-otolith and auditory afferents can be simultaneously activated using loud sound pressure stimulation, which is routinely used for testing cervical and ocular vestibular evoked myogenic potentials (VEMPs) in clinical neurotological testing. Due to the simultaneous activation of afferents there is always an auditory confound problem in fMRI studies of the neural topology of these systems. Here, we demonstrate that the auditory confounding problem can be overcome in a novel way that does not require the assumption of simple subtraction and additionally allows detection of non-linear changes in the response due to vestibular-otolith interference. We used a parametric sound pressure stimulation design that took each subject's vestibular stimulation threshold into account and analyzed for changes in BOLD-response below and above vestibular-otolith threshold. This approach helped to investigate the functional neuroanatomy of sound-induced auditory and vestibular integration using functional magnetic resonance imaging (fMRI). Results revealed that auditory and vestibular convergence are contained in overlapping regions of the caudal part of the superior temporal gyrus (STG) and the posterior insula. In addition, there are regions that were responsive only to suprathreshold stimulations, suggesting vestibular (otolith) signal processing in these areas. Based on these parametric analyses, we suggest that the caudal part of the STG and posterior insula could contain areas of vestibular contribution to auditory processing, i.e., higher vestibular cortices that provide multisensory integration that is important for tasks such as spatial localization of sound.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Propiocepción/fisiología , Umbral Sensorial/fisiología , Potenciales Vestibulares Miogénicos Evocados/fisiología , Vestíbulo del Laberinto/fisiología , Estimulación Acústica , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Membrana Otolítica/fisiología , Lóbulo Temporal/fisiología
7.
J Neurosci ; 35(19): 7365-73, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25972166

RESUMEN

The beneficial effects of placebo treatments on fear and anxiety (placebo anxiolysis) are well known from clinical practice, and there is strong evidence indicating a contribution of treatment expectations to the efficacy of anxiolytic drugs. Although clinically highly relevant, the neural mechanisms underlying placebo anxiolysis are poorly understood. In two studies in humans, we tested whether the administration of an inactive treatment along with verbal suggestions of anxiolysis can attenuate experimentally induced states of phasic fear and/or sustained anxiety. Phasic fear is the response to a well defined threat and includes attentional focusing on the source of threat and concomitant phasic increases of autonomic arousal, whereas in sustained states of anxiety potential and unclear danger requires vigilant scanning of the environment and elevated tonic arousal levels. Our placebo manipulation consistently reduced vigilance measured in terms of undifferentiated reactivity to salient cues (indexed by subjective ratings, skin conductance responses and EEG event-related potentials) and tonic arousal [indexed by cue-unrelated skin conductance levels and enhanced EEG alpha (8-12 Hz) activity], indicating a downregulation of sustained anxiety rather than phasic fear. We also observed a placebo-dependent sustained increase of frontal midline EEG theta (4-7 Hz) power and frontoposterior theta coupling, suggesting the recruitment of frontally based cognitive control functions. Our results thus support the crucial role of treatment expectations in placebo anxiolysis and provide insight into the underlying neural mechanisms.


Asunto(s)
Ansiedad/psicología , Ansiedad/terapia , Mapeo Encefálico , Encéfalo/fisiopatología , Efecto Placebo , Adulto , Ansiedad/fisiopatología , Señales (Psicología) , Estimulación Eléctrica/efectos adversos , Electroencefalografía , Miedo , Femenino , Respuesta Galvánica de la Piel , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Dolor/complicaciones , Dolor/etiología , Dolor/psicología , Dimensión del Dolor , Placebos/uso terapéutico , Factores de Tiempo , Adulto Joven
8.
Neuroimage ; 127: 409-421, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26666898

RESUMEN

Strong magnetic fields (>1 Tesla) can cause dizziness and it was recently shown that healthy subjects (resting in total darkness) developed a persistent nystagmus even when remaining completely motionless within a MR tomograph. Consequently, it was speculated that this magnetic vestibular stimulation (MVS) might influence fMRI results, as nystagmus is indicative of an imbalance in the vestibular system, potentially influencing other systems via multisensory vestibular interactions. The objective of our study was to investigate whether MVS does indeed modulate BOLD signal fluctuations. We recorded eye movements, as well as, resting-state fMRI of 30 volunteers in darkness at 1.5 T and 3.0 T to answer the question whether MVS modulated parts of the default mode resting-state network (DMN) in accordance with the Lorentz-force model for MVS, while distinguishing this from the known signal increase due to field strength related imaging effects. Our results showed that modulation of the default mode network occurred mainly in areas associated with vestibular and ocular motor function, and was in accordance with the Lorentz-force model, i.e., double than the expected signal scaling due to field strength alone. We discuss the implications of our findings for the interpretation of studies using resting-state fMRI, especially those concerning vestibular research. We conclude that MVS needs to be considered in vestibular research to avoid biased results, but it might also offer the possibility of manipulating network dynamics and may thus help in studying the brain as a dynamical system.


Asunto(s)
Encéfalo , Campos Magnéticos/efectos adversos , Imagen por Resonancia Magnética/efectos adversos , Nistagmo Fisiológico , Encéfalo/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Nistagmo Patológico/diagnóstico , Vestíbulo del Laberinto/fisiopatología
9.
Eur Arch Otorhinolaryngol ; 273(2): 317-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25628238

RESUMEN

Vestibular-evoked myogenic potentials (VEMPs) are frequently used in the clinical diagnosis and research of vertigo syndromes. Altered latencies or amplitudes are typically interpreted as an indication of disturbance in the processing of vestibular stimuli along the otolithic pathways. Correct interpretation, however, can be difficult as VEMP amplitudes can vary greatly across subjects and across laboratories, likely because they are very sensitive to measurement conditions. Here, we attempted to quantify the impact of examiner differences on VEMP data. We collected data from 1,038 people using eight different experimental examiners, and investigated the effect of examiner on VEMP latencies and amplitudes. We found that the examiner collecting the data had a strong effect on outcome measures with significant differences (p < 0.001) in cVEMP and oVEMP latencies and in oVEMP amplitudes. No significant differences between examiners were found for the cVEMP amplitudes. When we compared the healthy and pathological sides of patients with a clinically diagnosed unilateral disease, no significant differences between sides were found. Given our results and the results reported in the literature, we conclude that the signal features of VEMPs are very sensitive to variables that may be influenced by the examiner. The field should therefore work on a better standard for VEMP recordings.


Asunto(s)
Movimientos de la Cabeza/fisiología , Cuello/fisiología , Membrana Otolítica/fisiopatología , Vértigo/fisiopatología , Potenciales Vestibulares Miogénicos Evocados/fisiología , Vestíbulo del Laberinto/fisiopatología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vértigo/diagnóstico
10.
Eur Arch Otorhinolaryngol ; 273(10): 2931-9, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26728484

RESUMEN

Linear motion perceptual thresholds (PTs) were compared between patients with Menière's disease (MD) and vestibular migraine (VM). Twenty patients with VM, 27 patients with MD and 34 healthy controls (HC) were examined. PTs for linear motion along the inter-aural (IA), naso-occipital axes (NO), and head-vertical (HV) axis were measured using a multi-axis motion platform. Ocular and cervical vestibular evoked myogenic potentials (o/c VEMP) were performed and the dizziness handicap inventory (DHI) administered. In order to discriminate between VM and MD, we also evaluated the diagnostic accuracy of applied methods. PTs depended significantly on the group tested (VM, MD and HC), as revealed by ANCOVA with group as the factor and age as the covariate. This was true for all motion axes (IA, HV and NO). Thresholds were highest for MD patients, significantly higher than for all other groups for all motion axes, except for the IA axis when compared with HC group suggesting decreased otolith sensitivity in MD patients. VM patients had thresholds that were not different from those of HC, but were significantly lower than those of the MD group for all motion axes. The cVEMP p13 latencies differed significantly across groups being lowest in VM. There was a statistically significant association between HV and NO thresholds and cVEMP PP amplitudes. Diagnostic accuracy was highest for the IA axis, followed by cVEMP PP amplitudes, NO and HV axes. To conclude, patients with MD had significantly higher linear motion perception thresholds compared to patients with VM and controls. Except for reduced cVEMP latency, there were no differences in c/oVEMP between MD, VM and controls.


Asunto(s)
Enfermedad de Meniere/fisiopatología , Trastornos Migrañosos/diagnóstico , Trastornos Migrañosos/fisiopatología , Percepción de Movimiento/fisiología , Umbral Sensorial/fisiología , Potenciales Vestibulares Miogénicos Evocados/fisiología , Adulto , Análisis de Varianza , Estudios de Casos y Controles , Diagnóstico Diferencial , Mareo/fisiopatología , Femenino , Humanos , Masculino , Enfermedad de Meniere/diagnóstico , Persona de Mediana Edad , Membrana Otolítica/fisiopatología , Vértigo/fisiopatología , Vestíbulo del Laberinto
11.
Neuroimage ; 100: 435-43, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24945670

RESUMEN

While the role of synchronized oscillatory activity in the gamma-band frequency range for conscious perception is well established in the visual domain, there is limited evidence concerning neurophysiological mechanisms in conscious auditory perception. In the current study, we addressed this issue with 64-channel EEG and a dichotic listening (DL) task in twenty-five healthy participants. The typical finding of DL is a more frequent conscious perception of the speech syllable presented to the right ear (RE), which is attributed to the supremacy of the contralateral pathways running from the RE to the speech-dominant left hemisphere. In contrast, the left ear (LE) input initially accesses the right hemisphere and needs additional transfer via interhemispheric pathways before it is processed in the left hemisphere. Using lagged phase synchronization (LPS) analysis and eLORETA source estimation we examined the functional connectivity between right and left primary and secondary auditory cortices in the main frequency bands (delta, theta, alpha, beta, gamma) during RE/LE-reports. Interhemispheric LPS between right and left primary and secondary auditory cortices was specifically increased in the gamma-band range, when participants consciously perceived the syllable presented to the LE. Our results suggest that synchronous gamma oscillations are involved in interhemispheric transfer of auditory information.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Estado de Conciencia/fisiología , Lateralidad Funcional/fisiología , Ritmo Gamma/fisiología , Adulto , Vías Auditivas/fisiología , Pruebas de Audición Dicótica , Electroencefalografía , Femenino , Humanos , Masculino , Factores de Tiempo
12.
Gait Posture ; 107: 83-95, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778297

RESUMEN

BACKGROUND: The vestibular system detects head accelerations within 6 degrees of freedom. How well this is accomplished is described by vestibular perceptual thresholds. They are a measure of perceptual performance based on the conscious evaluation of sensory information. This review provides an integrative synthesis of the vestibular perceptual thresholds reported in the literature. The focus lies on the estimation of thresholds in healthy participants, used devices and stimulus profiles. The dependence of these thresholds on the participants clinical status and age is also reviewed. Furthermore, thresholds from primate studies are discussed. RESULTS: Thresholds have been measured for frequencies ranging from 0.05 to 5 Hz. They decrease with increasing frequency for five of the six main degrees of freedom (inter-aural, head-vertical, naso-occipital, yaw, pitch). No consistent pattern is evident for roll rotations. For a frequency range beyond 5 Hz, a U-shaped relationship is suggested by a qualitative comparison to primate data. Where enough data is available, increasing thresholds with age and higher thresholds in patients compared to healthy controls can be observed. No effects related to gender or handedness are reported. SIGNIFICANCE: Vestibular thresholds are essential for next generation screening tools in the clinical domain, for the assessment of athletic performance, and workplace safety alike. Knowledge about vestibular perceptual thresholds contributes to basic and applied research in fields such as perception, cognition, learning, and healthy aging. This review provides normative values for vestibular thresholds. Gaps in current knowledge are highlighted and attention is drawn to specific issues for improving the inter-study comparability in the future.


Asunto(s)
Percepción de Movimiento , Vestíbulo del Laberinto , Humanos , Animales , Aceleración , Aprendizaje , Primates , Umbral Sensorial
13.
Commun Biol ; 7(1): 1087, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237668

RESUMEN

Vestibular motion perception declines with age, increasing the risk of falling substantially. We performed a two-week perceptual learning intervention using a self-motion direction discrimination task (2800 training trials per person) on a 6 degrees of freedom motion platform in healthy older adults (n = 40, aged 70-88 yr). Linear inter-aural and angular roll tilt vestibular thresholds improved with training (95% credible interval for pre/post difference), suggesting altered sensitivity post-training. Moreover, improved perceptual abilities transfer to actual posture (reduced sway) and gait parameters. Passive self-motion discrimination training provides a new and promising way to counteract age-related sensory decline. It can reduce the risk of falling, and thereby maintain individual autonomy and quality of life.


Asunto(s)
Marcha , Percepción de Movimiento , Postura , Vestíbulo del Laberinto , Humanos , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Marcha/fisiología , Percepción de Movimiento/fisiología , Vestíbulo del Laberinto/fisiología , Postura/fisiología , Aprendizaje/fisiología , Equilibrio Postural/fisiología
14.
Neuroimage ; 81: 412-421, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23689018

RESUMEN

The regulation of emotion by cognitive reappraisal has attracted a lot of attention over the last decade. Studies using functional magnetic resonance imaging (fMRI) revealed a wide-spread network of multiple prefrontal and sub-cortical brain regions involved in the successful decrease of negative emotions. However, less is known about the temporal dynamics and the physiological mechanisms underlying these regulation processes. Synchronization of neural oscillations in specific frequency bands plays a key-role in the long-range interaction of different brain regions and oscillatory coupling in the theta frequency range was recently identified to play an important role in the interaction of prefrontal structures, the amygdala and the hippocampus in animal models. Accordingly, we investigated the role of prefrontal theta oscillations during the cognitive reappraisal of aversive pictures in humans. We hypothesized an increase in frontal theta oscillations during emotion regulation and a relationship between frontal theta power and the subjective success of emotion regulation. EEG from 30 healthy participants was recorded while they were asked to passively watch or reappraise the content of pictures with negative content. As expected, we found a significant increase in frequencies around 4Hz at electrode Fz during the regulation condition 'decrease' compared to the 'maintain' condition (p=.006) as well as for the regulation condition 'increase' compared to the 'maintain' condition (p=.017). Additionally, the strength of theta power was positively correlated with the regulation success as reported by the participants (r=0.463, p<.05). The estimation of possible generators of the theta oscillations was done using standardized low resolution electromagnetic tomography (sLORETA). Results suggested the left middle/inferior frontal gyrus as a possible generator. The results of the present study are in line with previous findings of fMRI studies suggesting the same regions as part of the regulation network and provide a first direct link between the imaging based knowledge of emotion regulation and a possible physiological mechanism.


Asunto(s)
Electroencefalografía , Emociones/fisiología , Corteza Prefrontal/fisiología , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador , Adulto Joven
15.
J Vestib Res ; 33(5): 299-312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37458057

RESUMEN

BACKGROUND: Naturalistic head accelerations can be used to elicit vestibular evoked potentials (VestEPs). These potentials allow for analysis of cortical vestibular processing and its multi-sensory integration with a high temporal resolution. METHODS: We report the results of two experiments in which we compared the differential VestEPs elicited by randomized translations, rotations, and tilts in healthy subjects on a motion platform. RESULTS: An event-related potential (ERP) analysis revealed that established VestEPs were verifiable in all three acceleration domains (translations, rotations, tilts). A further analysis of the VestEPs showed a significant correlation between rotation axes (yaw, pitch, roll) and the amplitude of the evoked potentials. We found increased amplitudes for rotations in the roll compared to the pitch and yaw plane. A distributed source localization analysis showed that the activity in the cingulate sulcus visual (CSv) area best explained direction-dependent amplitude modulations of the VestEPs, but that the same cortical network (posterior insular cortex, CSv) is involved in processing vestibular information, regardless of the motion direction. CONCLUSION: The results provide evidence for an anisotropic, direction-dependent processing of vestibular input by cortical structures. The data also suggest that area CSv plays an integral role in ego-motion perception and interpretation of spatial features such as acceleration direction and intensity.


Asunto(s)
Percepción de Movimiento , Vestíbulo del Laberinto , Humanos , Vestíbulo del Laberinto/fisiología , Aceleración
16.
J Vis Exp ; (193)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36939227

RESUMEN

Strong magnetic fields induce dizziness, vertigo, and nystagmus due to Lorentz forces acting on the cupula in the semi-circular canals, an effect called magnetic vestibular stimulation (MVS). In this article, we present an experimental setup in a 7T MRT scanner (MRI scanner) that allows the investigation of the influence of strong magnetic fields on nystagmus as well as perceptual and cognitive responses. The strength of MVS is manipulated by altering the head positions of the participants. The orientation of the participants' semicircular canals with respect to the static magnetic field is assessed by combining a 3D magnetometer and 3D constructive interference in steady-state (3D-CISS) images. This approach allows to account for intra- and inter-individual differences in participants' responses to MVS. In the future, MVS can be useful for clinical research, for example, in the investigation of compensatory processes in vestibular disorders. Furthermore, it could foster insights into the interplay between vestibular information and cognitive processes in terms of spatial cognition and the emergence of self-motion percepts under conflicting sensory information. In fMRI studies, MVS can elicit a possible confounding effect, especially in tasks influenced by vestibular information or in studies comparing vestibular patients with healthy controls.


Asunto(s)
Percepción de Movimiento , Vestíbulo del Laberinto , Humanos , Vestíbulo del Laberinto/diagnóstico por imagen , Vestíbulo del Laberinto/fisiología , Campos Magnéticos , Canales Semicirculares/diagnóstico por imagen , Canales Semicirculares/fisiología , Vértigo , Cognición
17.
Neuroimage ; 62(3): 1807-14, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22584235

RESUMEN

Event-related potential (ERP) studies in the visual domain often report an emotion-evoked early posterior negativity (EPN). Studies in the auditory domain have recently shown a similar component. Little source localization has been done on the visual EPN, and no source localization has been done on the auditory EPN. The aim of the current study was to identify the neural generators of the auditory EPN using EEG-fMRI single-trial coupling. Data were recorded from 19 subjects who completed three auditory choice reaction tasks: (1) a control task using neutral tones; (2) a prosodic emotion task involving the categorization of syllables; and (3) a semantic emotion task involving the categorization of words. The waveforms of the emotion tasks diverged from the neutral task over parietal scalp during a very early time window (132-156 ms) and later during a more traditional EPN time window (252-392 ms). In the EEG-fMRI analyses, the variance of the voltage in the earlier time window was correlated with activity in the medial prefrontal cortex, but only in the word task. In the EEG-fMRI analyses of the traditional EPN time window both emotional tasks covaried with activity in the left superior parietal lobule. Our results support previous parietal cortex source localization findings for the visual EPN, and suggest enhanced selective attention to emotional stimuli during the EPN time window.


Asunto(s)
Percepción Auditiva/fisiología , Mapeo Encefálico/métodos , Encéfalo/fisiología , Emociones/fisiología , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Tiempo de Reacción/fisiología , Procesamiento de Señales Asistido por Computador , Adulto Joven
18.
J Vis Exp ; (186)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993707

RESUMEN

Vestibular perceptual thresholds refer to the motion intensity required to enable a participant to detect or discriminate a motion based on vestibular input. Using passive motion profiles provided by six degree-of-motion platforms, vestibular perceptual thresholds can be estimated for any kind of motion and thereby target each of the sub-components of the vestibular end-organ. Assessments of vestibular thresholds are clinically relevant as they complement diagnostic tools such as caloric irrigation, the head impulse test (HIT), or vestibular evoked myogenic potentials (VEMPs), which only provide information on sub-components of the vestibular system, but none of them allow for assessing all components. There are several methods with different advantages and disadvantages for estimating vestibular perceptual thresholds. In this article, we present a protocol using an adaptive staircase algorithm and sinusoidal motion profiles for an efficient estimation procedure. Adaptive staircase algorithms consider the response history to determine the peak velocity of the next stimuli and are the most commonly used algorithms in the vestibular domain. We further discuss the impact of motion frequency on vestibular perceptual thresholds.


Asunto(s)
Potenciales Vestibulares Miogénicos Evocados , Vestíbulo del Laberinto , Prueba de Impulso Cefálico , Humanos , Movimiento (Física) , Potenciales Vestibulares Miogénicos Evocados/fisiología , Vestíbulo del Laberinto/fisiología
19.
Front Surg ; 9: 821509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419403

RESUMEN

Introduction: Protective loop-ileostomy is one of the most common interventions in abdominal surgery to provide an alternative intestinal outlet until sufficient healing of a distal anastomosis has occurred. However, closure of a loop-ileostomy is also associated with complications. Thus, knowledge of the optimal time interval between primary and secondary surgery is crucial. Methods: Data from 409 patients were retrospectively analyzed regarding complications and risk factors in closure-associated morbidity and mortality. A modified Clavien-Dindo classification of surgical complications was used to evaluate the severity of complications. Results: A total of 96 (23.5%) patients suffered from postoperative complications after the closure of the loop-ileostomy. Early closure within 150 days from enterostomy (n = 229) was associated with less complications (p < 0.001**). Looking at the severity of complications, there were significantly more (p = 0.014*) mild postoperative complications in the late closure group (>150 days). Dysfunctional digestive problems-either (sub-) ileus (p = 0.004*), diarrhea or stool incontinence (p = 0.003*)-were the most frequent complications associated with late closure. Finally, we could validate in a multivariate analysis that "time to closure" (p = 0.002*) is independently associated with the development of complications after closure of a protective loop-ileostomy. Conclusion: Late closure (>150 days) of a loop-ileostomy is an independent risk factor in post-closure complications in a multivariate analysis. Nevertheless, circumstances of disease and therapy need to be considered when scheduling the closure procedure.

20.
Neuroimage Clin ; 33: 102953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35139478

RESUMEN

OBJECTIVE: The integration of somatosensory, ocular motor and vestibular signals is necessary for self-location in space and goal-directed action. We aimed to detect remote changes in the cerebral cortex after thalamic infarcts to reveal the thalamo-cortical connections necessary for multisensory processing and ocular motor control. METHODS: Thirteen patients with unilateral ischemic thalamic infarcts presenting with vestibular, somatosensory, and ocular motor symptoms were examined longitudinally in the acute phase and after six months. Voxel- and surface-based morphometry were used to detect changes in vestibular and multisensory cortical areas and known hubs of central ocular motor processing. The results were compared with functional connectivity data in 50 healthy volunteers. RESULTS: Patients with paramedian infarcts showed impaired saccades and vestibular perception, i.e., tilts of the subjective visual vertical (SVV). The most common complaint in these patients was double vision or vertigo / dizziness. Posterolateral thalamic infarcts led to tilts of the SVV and somatosensory deficits without vertigo. Tilts of the SVV were higher in paramedian compared to posterolateral infarcts (median 11.2° vs 3.8°). Vestibular and ocular motor symptoms recovered within six months. Somatosensory deficits persisted. Structural longitudinal imaging showed significant volume reduction in subcortical structures connected to the infarcted thalamic nuclei (vestibular nuclei region, dentate nucleus region, trigeminal root entry zone, medial lemniscus, superior colliculi). Volume loss was evident in connections to the frontal, parietal and cingulate lobes. Changes were larger in the ipsilesional hemisphere but were also detected in homotopical regions contralesionally. The white matter volume reduction led to deformation of the cortical projection zones of the infarcted nuclei. CONCLUSIONS: White matter volume loss after thalamic infarcts reflects sensory input from the brainstem as well the cortical projections of the main affected nuclei for sensory and ocular motor processing. Changes in the cortical geometry seem not to reflect gray matter atrophy but rather reshaping of the cortical surface due to the underlying white matter atrophy.


Asunto(s)
Vestíbulo del Laberinto , Sustancia Blanca , Corteza Cerebral/diagnóstico por imagen , Infarto Cerebral/complicaciones , Infarto Cerebral/diagnóstico por imagen , Humanos , Tálamo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA