Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 76(1): 191-205.e10, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31445887

RESUMEN

Normal mitochondrial functions rely on optimized composition of their resident proteins, and proteins mistargeted to mitochondria need to be efficiently removed. Msp1, an AAA-ATPase in the mitochondrial outer membrane (OM), facilitates degradation of tail-anchored (TA) proteins mistargeted to the OM, yet how Msp1 cooperates with other factors to conduct this process was unclear. Here, we show that Msp1 recognizes substrate TA proteins and facilitates their transfer to the endoplasmic reticulum (ER). Doa10 in the ER membrane then ubiquitinates them with Ubc6 and Ubc7. Ubiquitinated substrates are extracted from the ER membrane by another AAA-ATPase in the cytosol, Cdc48, with Ufd1 and Npl4 for proteasomal degradation in the cytosol. Thus, Msp1 functions as an extractase that mediates clearance of mistargeted TA proteins by facilitating their transfer to the ER for protein quality control.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/enzimología , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
2.
Biochem Biophys Res Commun ; 523(4): 835-840, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31954512

RESUMEN

The 26S proteasome is the major degradation machinery for soluble proteins in eukaryotes. Recent evidence reveals the existence of an alternative ATP-powered protein degradation complex, the Cdc48-20S proteasome complex, and we have identified yeast Sod1, a copper-zinc superoxide dismutase, as an endogenous substrate protein. Here, we identified yeast Ths1, an essential threonyl tRNA synthetase, as another endogenous substrate protein of the Cdc48-20S proteasome. In order to analyze the degradation mechanism in more details, we established an in vitro degradation system reconstituted using purified yeast components. Recombinant Sod1 and Ths1 directly interacted with Cdc48, and were degraded in a Cdc48-20S proteasome-dependent manner. Because the substrate proteins were purified from E. coli cells, no eukaryotic modifications including ubiquitination and phosphorylation exist. Therefore, although the 26S proteasome requires ubiquitination for specific recognition of the substrate proteins, the Cdc48-20S proteasome can degrade a class of substrate proteins without any modifications.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo , Proteína que Contiene Valosina/metabolismo , Escherichia coli/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
3.
J Biol Chem ; 290(18): 11762-70, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25805498

RESUMEN

The microtubule (MT) network is highly dynamic and undergoes dramatic reorganizations during the cell cycle. Dimers of α- and ß-tubulins rapidly polymerize to and depolymerize from the end of MT fibrils in an intrinsic GTP-dependent manner. MT severing by ATP-driven enzymes such as katanin and spastin contributes significantly to microtubule dynamics, and it has been shown that katanin p60, a AAA+ family protein, has ATPase and MT-severing activities. The mechanism of MT severing by katanin p60 is poorly understood, and the residues in katanin p60 and tubulins important for severing activity were therefore explored in this study. MT-severing activity, but not ATPase activity, was inhibited by mutations of the conserved aromatic residue and the flanking basic residues in the pore region of the katanin p60 hexameric ring. When the acidic residue-rich C-terminal unstructured segment of either α- or ß-tubulin was removed, polymerized MTs were resistant to katanin p60 treatment. Interactions between katanin p60 and the mutant MTs, on the other hand, were unaffected. Taken together, these findings led us to propose that the interactions between the positively charged residues of katanin p60 and the acidic tails of both tubulins are essential for efficient severing of MTs.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Aminoácidos Básicos , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Humanos , Katanina , Datos de Secuencia Molecular , Porosidad , Erizos de Mar , Células Sf9 , Spodoptera
4.
J Struct Biol ; 187(2): 187-193, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24893221

RESUMEN

Cdc48p is a highly conserved cytosolic AAA chaperone that is involved in a wide range of cellular processes. It consists of two ATPase domains (D1 and D2), with regulatory regions at the N- and C-terminals. We have recently shown that Cdc48p regulates mitochondrial morphology, in that a loss of the ATPase activity or positive cooperativity in the D2 domain leads to severe fragmentations and aggregations of mitochondria in the cytoplasm. We have now used serial block-face scanning electron microscopy (SBF-SEM), an advanced three-dimensional (3D) electron microscopic technique to examine the structures and morphological changes of mitochondria in the yeast Saccharomyces cerevisiae. We found that mutants lacking ATPase activity of Cdc48p showed mitochondrial fragmentations and aggregations, without fusion of the outer membrane. This suggests that the ATPase activity of Cdc48p is necessary for fusion of the outer membranes of mitochondria. Our results also show that SBF-SEM has considerable advantages in morphological and quantitative studies on organelles and intracellular structures in entire cells.


Asunto(s)
Adenosina Trifosfatasas/química , Microscopía Electrónica de Rastreo , Mitocondrias/ultraestructura , Proteínas Nucleares/química , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/metabolismo , Citoplasma/enzimología , Imagenología Tridimensional , Mitocondrias/enzimología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Mutación , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína
5.
Biochem Biophys Res Commun ; 443(3): 997-1002, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24361883

RESUMEN

Bcs1 is a transmembrane chaperone in the mitochondrial inner membrane, and is required for the mitochondrial Respiratory Chain Complex III assembly. It has been shown that the highly-conserved C-terminal region of Bcs1 including the AAA ATPase domain in the matrix side is essential for the chaperone function. Here we describe the importance of the N-terminal short segment located in the intermembrane space in the Bcs1 function. Among the N-terminal 44 amino acid residues of yeast Bcs1, the first 37 residues are dispensable whereas a hydrophobic amino acid in the residue 38 is essential for integration of Rieske Iron-sulfur Protein into the premature Complex III from the mitochondrial matrix. Substitution of the residue 38 by a hydrophilic amino acid residue affects conformation of Bcs1 and interactions with other proteins. The evolutionarily-conserved short α helix of Bcs1 in the intermembrane space is an essential element for the chaperone function.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Reactivos de Enlaces Cruzados/farmacología , Digitonina/farmacología , Electroforesis en Gel de Poliacrilamida , Leucina/genética , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/efectos de los fármacos
6.
Clin Exp Nephrol ; 18(4): 655-61, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24113781

RESUMEN

BACKGROUND: Hypoalbuminemia caused by peritoneal dialysate protein loss, frequently occurs in patients on peritoneal dialysis (PD) and is associated with an increased risk of death. We investigate whether PD dialysis exchange volume (PD volume) could be reduced with tolvaptan (TVP) through increased urine volume (UV). METHODS: The study included 11 stable patients with oliguria undergoing PD. The following parameters were examined-diuretic response and the effect of TVP on peritoneal ultrafiltration (UF), body weight, serum albumin, sodium, arm muscle area (AMA), PD volume, dialysis efficiency calculator (K t/V), and urine and serum osmolarity (OSM). RESULTS: The average UV increased from 428 ± 178 to 906 ± 285 mL (p = 0.018 by paired t test). Average weekly PD volume decreased from 28,836 ± 5,699 to 23,872 ± 3,569 mL (p = 0.04 by paired t test). Average UF increased from 283 ± 147 to 575 ± 135 mL (p = 0.019 by paired t test). On the other hand, there was no significant difference in the average dialysate K t/V before and after TVP treatment. Serum sodium, AMA, and serum albumin levels were not statistically different before and after TVP treatment. The urine and serum OSM ratio of effective cases before TVP treatment was higher than that of ineffective cases (p = 0.024 by unpaired t test). CONCLUSION: Our results indicate that TVP is useful for patients on continuous ambulatory PD who have oliguria and high urine osmolarity. Furthermore, we can reduce PD volume to maintain their nutritional status.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/uso terapéutico , Benzazepinas/uso terapéutico , Oliguria/terapia , Diálisis Peritoneal Ambulatoria Continua , Micción/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Hipoalbuminemia/etiología , Hipoalbuminemia/fisiopatología , Hipoalbuminemia/prevención & control , Masculino , Persona de Mediana Edad , Estado Nutricional , Oliguria/diagnóstico , Oliguria/fisiopatología , Concentración Osmolar , Diálisis Peritoneal Ambulatoria Continua/efectos adversos , Factores de Tiempo , Tolvaptán , Resultado del Tratamiento , Urodinámica/efectos de los fármacos , Equilibrio Hidroelectrolítico
7.
Proc Natl Acad Sci U S A ; 108(1): 91-6, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173275

RESUMEN

Mitochondria import most of their resident proteins from the cytosol, and the import receptor Tom20 of the outer-membrane translocator TOM40 complex plays an essential role in specificity of mitochondrial protein import. Here we analyzed the effects of Tom20 binding on NMR spectra of a long mitochondrial presequence and found that it contains two distinct Tom20-binding elements. In vitro import and cross-linking experiments revealed that, although the N-terminal Tom20-binding element is essential for targeting to mitochondria, the C-terminal element increases efficiency of protein import in the step prior to translocation across the inner membrane. Therefore Tom20 has a dual role in protein import into mitochondria: recognition of the targeting signal in the presequence and tethering the presequence to the TOM40 complex to increase import efficiency.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión/genética , Inmunoprecipitación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/genética , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Saccharomyces cerevisiae
8.
J Struct Biol ; 179(2): 112-20, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22580068

RESUMEN

Cdc48p/p97 is a cytosolic essential AAA chaperone, which regulates multiple cellular reactions in a ubiquitin-dependent manner. We have recently shown that Cdc48p exhibits positively cooperative ATPase activity and loss of the positive cooperativity results in yeast cell death. Here we show that loss of the positive cooperativity of the yeast Cdc48p ATPase activity led to severe mitochondrial aggregation. The actin cytoskeleton and distribution of the ER-mitochondria tethering complex (ERMES) were eliminated from the cause of the mitochondrial aggregation. Instead, a mitochondrial outer membrane protein Fzo1p, which is required for mitochondrial fusion, and components of ERMES, which is involved in mitochondrial morphology, were remarkably stabilized in the Cdc48p mutants. In the last couple of years, it was shown that Vms1p functions as a cofactor of Cdc48p for the function of protein degradation of mitochondrial outer membrane proteins. Nevertheless, we found that Vms1p was not involved in the Cdc48p-dependent mitochondrial aggregation and loss of Vms1p did not significantly affect degradation rates of proteins anchored to the mitochondrial outer membrane. These results suggest that Cdc48p controls mitochondrial morphology by regulating turnover of proteins involved in mitochondrial morphology in a Vms1p-independent manner.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Degradación Asociada con el Retículo Endoplásmico/genética , Degradación Asociada con el Retículo Endoplásmico/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína que Contiene Valosina
9.
J Struct Biol ; 179(2): 143-51, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22575764

RESUMEN

Fidgetin is a member of the AAA (ATPases associated with diverse cellular activities) chaperones. It is well-known that the specific function of a given AAA protein primarily depends upon its subcellular localization and interacting partners. FIGL-1, a Caenorhabditis elegans homolog of mammalian fidgetin, is localized in the nucleus. Here, we identified that the N-terminal PKRVK sequence of FIGL-1 functions as a monopartite nuclear localization signal. Nuclear localization of FIGL-1 is required for its function. We also found that FIGL-1 specifically interacted with SMO-1, a C. elegans homolog of small ubiquitin-like modifier (SUMO), using a yeast two-hybrid assay. Furthermore, the direct physical interaction between FIGL-1 and SMO-1 was demonstrated by pull-down assay using purified proteins as well as immunoprecipitation assay using lysates from epitope-tagged SMO-1-expressing worms. Binding of FIGL-1 to SMO-1 is required for its function. The depletion of FIGL-1 and SMO-1 resulted in developmental defects in C. elegans. Taken altogether, our results indicate that FIGL-1 is a nuclear protein and that in concert with SMO-1, FIGL-1 plays an important role in the regulation of C. elegans development.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteína SUMO-1/metabolismo , Adenosina Trifosfatasas/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Humanos , Inmunohistoquímica , Inmunoprecipitación , Proteínas Nucleares , Unión Proteica/genética , Unión Proteica/fisiología , Proteína SUMO-1/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina/genética , Ubiquitina/metabolismo
10.
J Struct Biol ; 179(2): 138-42, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22561316

RESUMEN

Spastin belongs to the meiotic subfamily, together with Vps4/SKD1, fidgetin and katanin, of AAA (ATPases associated with diverse cellular activities) proteins, and functions in microtubule severing. Interestingly, all members of this subgroup specifically contain an additional α-helix at the very C-terminal end. To understand the function of the C-terminal α-helix, we characterised its deletion mutants of SPAS-1, a Caenorhabditis elegans spastin homologue, in vitro and in vivo. We found that the C-terminal α-helix plays essential roles in ATP binding, ATP hydrolysing and microtubule severing activities. It is likely that the C-terminal α-helix is required for cellular functions of members of meiotic subgroup of AAA proteins, since the C-terminal α-helix of Vps4 is also important for assembly, ATPase activity and in vivo function mediated by ESCRT-III complexes.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas de Plasma Seminal/química , Proteínas de Plasma Seminal/metabolismo , Animales , Línea Celular , Cromatografía en Gel , Humanos , Proteínas Mitocondriales/genética , Proteínas de Plasma Seminal/genética , Espectrometría de Fluorescencia
11.
J Biol Chem ; 286(18): 15815-20, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21454554

RESUMEN

p97 is composed of two conserved AAA (ATPases associated with diverse cellular activities) domains, which form a tandem hexameric ring. We characterized the ATP hydrolysis mechanism of CDC-48.1, a p97 homolog of Caenorhabditis elegans. The ATPase activity of the N-terminal AAA domain was very low at physiological temperature, whereas the C-terminal AAA domain showed high ATPase activity in a coordinated fashion with positive cooperativity. The cooperativity and coordination are generated by different mechanisms because a noncooperative mutant still showed the coordination. Interestingly, the growth speed of yeast cells strongly related to the positive cooperativity rather than the ATPase activity itself, suggesting that the positive cooperativity is critical for the essential functions of p97.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Proteínas de Ciclo Celular/metabolismo , Adenosina Trifosfatasas/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
12.
J Biol Chem ; 284(46): 31635-46, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19767391

RESUMEN

Mitochondrial protein traffic requires precise recognition of the mitochondrial targeting signals by the import receptors on the mitochondrial surface including a general import receptor Tom20 and a receptor for presequence-less proteins, Tom70. Here we took a proteome-wide approach of mitochondrial protein import in vitro to find a set of presequence-containing precursor proteins for recognition by Tom70. The presequences of the Tom70-dependent precursor proteins were recognized by Tom20, whereas their mature parts exhibited Tom70-dependent import when attached to the presequence of Tom70-independent precursor proteins. The mature parts of the Tom70-dependent precursor proteins have the propensity to aggregate, and the presence of the receptor domain of Tom70 prevents their aggregate formation. Therefore Tom70 plays the role of a docking site for not only cytosolic chaperones but also aggregate-prone substrates to maintain their solubility for efficient transfer to downstream components of the mitochondrial import machineries.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Proteoma/análisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Electroforesis en Gel Bidimensional , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Chaperonas Moleculares , Precursores de Proteínas/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Biochem Cell Biol ; 88(1): 109-17, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20130684

RESUMEN

Cdc48p/p97 is a highly conserved essential AAA protein that is required for many cellular processes, and is identified as a causative gene for an autosomal dominant human disorder, inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). Cdc48p/p97 is composed of an N-terminal domain, followed by two AAA domains (D1 and D2) whose ATPase activities have been characterized extensively. In this study, effects of mutations on the essential functions of yeast Cdc48p/p97 in vivo were systematically analyzed. IBMPFD-related mutations do not affect the essential functions of Cdc48p/p97. Loss of ATPase activity of D2 leads to loss of function of the protein in vivo. In contrast, ATPase activity of D1 per se is not essential, but a mutation locking D1 in an ATP-bound form is exceptionally lethal. Site-directed and random mutagenesis analyses suggest that the ATP-bound form of D1 changes an inter-domain interaction, thereby perturbing an essential function of Cdc48p/p97.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae , Proteína que Contiene Valosina
14.
Genes Cells ; 14(8): 925-40, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19619244

RESUMEN

Mutations of human spastin, an AAA (ATPases associated with diverse cellular activity) family protein, cause an autosomal dominant form of hereditary spastic paraplegia, which is characterized by weakness, spasticity and loss of the vibratory sense in the lower limbs. Recently, it has been reported that spastin displays microtubule-severing activity. We also previously reported that Caenorhabditis elegans spastin homologue SPAS-1 displays microtubule severing. However, the detailed molecular mechanism of microtubule severing remains unknown. Here, we describe that SPAS-1 forms a stable hexamer in a concentration-dependent manner and that ATPase activity of SPAS-1 is greatly stimulated by microtubules. Furthermore, MTBD (microtubule-binding domain) of SPAS-1 is essential for binding to microtubules. Taken these results together, we propose that MTBD of SPAS-1 plays a critical role in enrichment of SPAS-1 to microtubules, where SPAS-1 is concentrated and able to form a stable hexamer, subsequently its ATPase activity is stimulated. On the other hand, our mutational analyses revealed that the conserved aromatic and basic amino acid residues in the pore region are important for microtubule severing. We also detected the direct interaction of the extremely acidic C-terminal polypeptide of tubulin with SPAS-1. Consequently, we propose that the central pore residues are important for the recognition of substrates.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Aminoácidos Aromáticos/química , Aminoácidos Básicos/química , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Microtúbulos/ultraestructura , Modelos Moleculares , Mutación , Paraplejía Espástica Hereditaria/metabolismo , Espastina , Resonancia por Plasmón de Superficie , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
J Matern Fetal Neonatal Med ; 33(7): 1151-1156, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30149736

RESUMEN

Objective: To elucidate the efficacy of continuous amnioinfusion on perinatal outcome in women with preterm premature rupture of membranes (PPROM) at periviable gestational ages.Methods: A database was reviewed to identify women with singleton pregnancies who were admitted to the Japanese Red Cross Nagoya Daiichi Hospital due to PPROM before 26 + 0-week gestation between July 2009 and July 2017.Results: A total of 81 women met the criteria for inclusion in this study including 70 and 11 women with and without amnioinfusion, respectively. The latency period between PPROM and delivery was significantly longer in women who underwent amnioinfusion compared with women without amnioinfusion (median: 13 versus 4 days, p < .001). In the survival analysis, the number of women who remained undelivered was significantly higher in the amnioinfusion group than in the non-amnioinfusion group for each gestational age after PPROM (p < .001). Cox's proportional hazards analysis with stepwise backward selection showed that both white blood cell counts on admission and amnioinfusion finally remained as variables that affected the time interval between PPROM and delivery [hazard ratio (95% confidence interval): 1.12 (1.06-1.18) and 0.34 (0.12-0.98), respectively].Conclusions: Continuous amnioinfusion in women with PPROM at periviable gestational ages resulted in significant prolongation of pregnancy and may help improve neonatal outcomes.


Asunto(s)
Rotura Prematura de Membranas Fetales/terapia , Segundo Trimestre del Embarazo , Solución Salina/administración & dosificación , Adulto , Amnios , Femenino , Edad Gestacional , Humanos , Embarazo , Estudios Retrospectivos
16.
J Biochem ; 167(3): 279-286, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31804690

RESUMEN

Dynamic functionality of mitochondria is maintained by continual fusion and fission events. A mitochondrial outer membrane protein Fzo1 plays a pivotal role upon mitochondrial fusion by homo-oligomerization to tether fusing mitochondria. Fzo1 is tightly regulated by ubiquitylations and the ubiquitin-responsible AAA protein Cdc48. Here, we show that a Cdc48 cofactor Ubx2 facilitates Fzo1 turnover. The Cdc48-Ubx2 complex has been shown to facilitate degradation of ubiquitylated proteins stacked at the protein translocation complex in the mitochondrial outer membrane by releasing them from the translocase. By contrast, in the degradation process of Fzo1, the Cdc48-Ubx2 complex appears to facilitate the degradation-signalling ubiquitylation of the substrate itself. In addition, the Cdc48-Ubx2 complex interacts with Ubp2, a deubiquitylase reversing the degradation-signalling ubiquitylation of Fzo1. These results suggest that the Cdc48-Ubx2 complex regulates Fzo1 turnover by modulating ubiquitylation status of the substrate.


Asunto(s)
Proteínas Portadoras/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína que Contiene Valosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/genética , Endopeptidasas/genética , Endopeptidasas/metabolismo , GTP Fosfohidrolasas/genética , Proteínas de la Membrana/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación/genética , Proteína que Contiene Valosina/genética
17.
Genes Cells ; 13(8): 827-38, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18782221

RESUMEN

Polyglutamine (polyQ)-expanded proteins are associated with cytotoxicity in some neurodegenerative disorders such as Huntington's disease. We have reported that the aggregation of the polyQ-expanded protein is partially suppressed by co-expression of either of two homologs of an AAA chaperone p97, CDC-48.1 or CDC-48.2, in Caenorhabditis elegans, but how p97 regulates the aggregation of polyQ-expanded proteins remains unclear. Here we present direct evidence that CDC-48.1 and CDC-48.2 suppress the aggregation of a huntingtin (Htt) exon1 fragment containing an expanded polyQ repeat in vitro. CDC-48.1 and CDC-48.2 bound the Htt exon1 fragment directly, and suppressed the formation of SDS-insoluble aggregates of Htt fragments containing 53 glutamine residues (HttQ53) independently of nucleotides. CDC-48.1 and CDC-48.2 also modulated the oligomeric states of HttQ53 during the aggregate formation. In the absence of CDC-48.1 and CDC-48.2, HttQ53 formed 70-150 kDa oligomers, whereas 300-500 kDa oligomers as well as 70-150 kDa oligomers accumulated in the presence of CDC-48.1 and CDC-48.2. Taken together, these results suggest that p97 plays a protective role in neurodegenerative disorders by directly suppressing the protein aggregation as a molecular chaperone.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Bovinos , Exones , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Tiosulfato Azufretransferasa/metabolismo , Proteína que Contiene Valosina
18.
Curr Biol ; 15(16): 1439-47, 2005 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-16111939

RESUMEN

BACKGROUND: Proteins are exported from the ER at transitional ER (tER) sites, which produce COPII vesicles. However, little is known about how COPII components are concentrated at tER sites. The budding yeast Pichia pastoris contains discrete tER sites and is, therefore, an ideal system for studying tER organization. RESULTS: We show that the integrity of tER sites in P. pastoris requires the peripheral membrane protein Sec16. P. pastoris Sec16 is an order of magnitude less abundant than a COPII-coat protein at tER sites and seems to show a saturable association with these sites. A temperature-sensitive mutation in Sec16 causes tER fragmentation at elevated temperature. This effect is specific because when COPII assembly is inhibited with a dominant-negative form of the Sar1 GTPase, tER sites remain intact. The tER fragmentation in the sec16 mutant is accompanied by disruption of Golgi stacks. CONCLUSIONS: Our data suggest that Sec16 helps to organize patches of COPII-coat proteins into clusters that represent tER sites. The Golgi disruption that occurs in the sec16 mutant provides evidence that Golgi structure in budding yeasts depends on tER organization.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Biología Computacional , Retículo Endoplásmico/fisiología , Aparato de Golgi/ultraestructura , Immunoblotting , Proteínas de la Membrana/genética , Microscopía Electrónica , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación/genética , Proteínas de Complejo Poro Nuclear , Pichia , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Temperatura
19.
J Biochem ; 164(5): 349-358, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29924334

RESUMEN

Mitochondria continuously undergo coordinated fusion and fission during vegetative growth to keep their homogeneity and to remove damaged components. A cytosolic AAA ATPase, Cdc48, is implicated in the mitochondrial fusion event and turnover of a fusion-responsible GTPase in the mitochondrial outer membrane, Fzo1, suggesting a possible linkage of mitochondrial fusion and Fzo1 turnover. Here, we identified two Cdc48 cofactor proteins, Ubp3 and Ubx2, involving mitochondria regulation. In the absence of UBP3, mitochondrial fragmentation and aggregation were observed. The turnover of Fzo1 was not affected in Δubp3, but instead a deubiquitylase Ubp12 that removes fusion-required polyubiquitin chains from Fzo1 was stabilized. Thus, excess amount of Ubp12 may lead to mitochondrial fragmentation by removal of fusion-competent ubiquitylated Fzo1. In contrast, deletion of UBX2 perturbed disassembly of Fzo1 oligomers and their degradation without alteration of mitochondrial morphology. The UBX2 deletion led to destabilization of Ubp2 that negatively regulates Fzo1 turnover by removing degradation-signalling polyubiquitin chains, suggesting that Ubx2 would directly facilitate Fzo1 degradation. These results indicated that two different Cdc48-cofactor complexes independently regulate mitochondrial fusion and Fzo1 turnover.


Asunto(s)
Proteínas Portadoras/metabolismo , Endopeptidasas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Endopeptidasas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
20.
Front Mol Biosci ; 5: 56, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29951484

RESUMEN

The ATP-powered protein degradation machinery plays essential roles in maintaining protein homeostasis in all organisms. Robust proteolytic activities are typically sequestered within protein complexes to avoid the fatal removal of essential proteins. Because the openings of proteolytic chambers are narrow, substrate proteins must undergo unfolding. AAA superfamily proteins (ATPases associated with diverse cellular activities) are mostly located at these openings and regulate protein degradation appropriately. The 26S proteasome, comprising 20S peptidase and 19S regulatory particles, is the major ATP-powered protein degradation machinery in eukaryotes. The 19S particles are composed of six AAA proteins and 13 regulatory proteins, and bind to both ends of a barrel-shaped proteolytic chamber formed by the 20S peptidase. Several recent studies have reported that another AAA protein, Cdc48, can replace the 19S particles to form an alternative ATP-powered proteasomal complex, i.e., the Cdc48-20S proteasome. This review focuses on our current knowledge of this alternative proteasome and its possible linkage to amyotrophic lateral sclerosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA