Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Cell ; 84(6): 1003-1020.e10, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38359824

RESUMEN

The high incidence of whole-arm chromosome aneuploidy and translocations in tumors suggests instability of centromeres, unique loci built on repetitive sequences and essential for chromosome separation. The causes behind this fragility and the mechanisms preserving centromere integrity remain elusive. We show that replication stress, hallmark of pre-cancerous lesions, promotes centromeric breakage in mitosis, due to spindle forces and endonuclease activities. Mechanistically, we unveil unique dynamics of the centromeric replisome distinct from the rest of the genome. Locus-specific proteomics identifies specialized DNA replication and repair proteins at centromeres, highlighting them as difficult-to-replicate regions. The translesion synthesis pathway, along with other factors, acts to sustain centromere replication and integrity. Prolonged stress causes centromeric alterations like ruptures and translocations, as observed in ovarian cancer models experiencing replication stress. This study provides unprecedented insights into centromere replication and integrity, proposing mechanistic insights into the origins of centromere alterations leading to abnormal cancerous karyotypes.


Asunto(s)
Centrómero , Secuencias Repetitivas de Ácidos Nucleicos , Humanos , Centrómero/genética , Mitosis/genética , Inestabilidad Genómica
2.
Mol Cell ; 83(4): 523-538.e7, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36702125

RESUMEN

Centromeres are essential for chromosome segregation in most animals and plants yet are among the most rapidly evolving genome elements. The mechanisms underlying this paradoxical phenomenon remain enigmatic. Here, we report that human centromeres innately harbor a striking enrichment of DNA breaks within functionally active centromere regions. Establishing a single-cell imaging strategy that enables comparative assessment of DNA breaks at repetitive regions, we show that centromeric DNA breaks are induced not only during active cellular proliferation but also de novo during quiescence. Markedly, centromere DNA breaks in quiescent cells are resolved enzymatically by the evolutionarily conserved RAD51 recombinase, which in turn safeguards the specification of functional centromeres. This study highlights the innate fragility of centromeres, which may have been co-opted over time to reinforce centromere specification while driving rapid evolution. The findings also provide insights into how fragile centromeres are likely to contribute to human disease.


Asunto(s)
Centrómero , ADN , Animales , Humanos , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Recombinación Genética
3.
Semin Cell Dev Biol ; 156: 141-151, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37872040

RESUMEN

Centromeres are large structural regions in the genomic DNA, which are essential for accurately transmitting a complete set of chromosomes to daughter cells during cell division. In humans, centromeres consist of highly repetitive α-satellite DNA sequences and unique epigenetic components, forming large proteinaceous structures required for chromosome segregation. Despite their biological importance, there is a growing body of evidence for centromere breakage across the cell cycle, including periods of quiescence. In this review, we provide an up-to-date examination of the distinct centromere environments at different stages of the cell cycle, highlighting their plausible contribution to centromere breakage. Additionally, we explore the implications of these breaks on centromere function, both in terms of negative consequences and potential positive effects.


Asunto(s)
Centrómero , ADN , Humanos , Centrómero/genética , Segregación Cromosómica , Evolución Biológica
4.
EMBO J ; 39(7): e103002, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31943278

RESUMEN

The timely activation of homologous recombination is essential for the maintenance of genome stability, in which the RAD51 recombinase plays a central role. Biochemically, human RAD51 polymerises faster on single-stranded DNA (ssDNA) compared to double-stranded DNA (dsDNA), raising a key conceptual question: how does it discriminate between them? In this study, we tackled this problem by systematically assessing RAD51 binding kinetics on ssDNA and dsDNA differing in length and flexibility using surface plasmon resonance. By directly fitting a mechanistic model to our experimental data, we demonstrate that the RAD51 polymerisation rate positively correlates with the flexibility of DNA. Once the RAD51-DNA complex is formed, however, RAD51 remains stably bound independent of DNA flexibility, but rapidly dissociates from flexible DNA when RAD51 self-association is perturbed. This model presents a new general framework suggesting that the flexibility of DNA, which may increase locally as a result of DNA damage, plays an important role in rapidly recruiting repair factors that multimerise at sites of DNA damage.


Asunto(s)
ADN/química , ADN/metabolismo , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Reparación del ADN , Humanos , Modelos Teóricos , Mutación Puntual , Unión Proteica , Recombinasa Rad51/genética , Dispersión del Ángulo Pequeño , Resonancia por Plasmón de Superficie , Difracción de Rayos X
5.
Semin Cell Dev Biol ; 113: 38-46, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32938550

RESUMEN

As the primary catalyst of homologous recombination (HR) in vertebrates, RAD51 has been extensively studied in the context of repair of double-stranded DNA breaks (DSBs). With recent advances in the understanding of RAD51 function extending beyond DSBs, the importance of RAD51 throughout DNA metabolism has become increasingly clear. Here we review the suggested roles of RAD51 beyond HR, specifically focusing on their interplay with DNA replication and the maintenance of genomic stability, in which RAD51 function emerges as a double-edged sword.


Asunto(s)
Inestabilidad Genómica/genética , Recombinasa Rad51/metabolismo , Roturas del ADN de Doble Cadena , Humanos
6.
Mol Cell ; 45(3): 371-83, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325354

RESUMEN

Homologous recombination (HR) plays an important role in the maintenance of genome integrity. HR repairs broken DNA during S and G2 phases of the cell cycle but its regulatory mechanisms remain elusive. Here, we report that Polo-like kinase 1 (Plk1), which is vital for cell proliferation and is frequently upregulated in cancer cells, phosphorylates the essential Rad51 recombinase at serine 14 (S14) during the cell cycle and in response to DNA damage. Strikingly, S14 phosphorylation licenses subsequent Rad51 phosphorylation at threonine 13 (T13) by casein kinase 2 (CK2), which in turn triggers direct binding to the Nijmegen breakage syndrome gene product, Nbs1. This mechanism facilitates Rad51 recruitment to damage sites, thus enhancing cellular resistance to genotoxic stresses. Our results uncover a role of Plk1 in linking DNA damage recognition with HR repair and suggest a molecular mechanism for cancer development associated with elevated activity of Plk1.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Secuencia de Aminoácidos , Proteína BRCA2/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular , Secuencia Conservada , Inestabilidad Genómica , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Recombinasa Rad51/química , Quinasa Tipo Polo 1
7.
Proc Natl Acad Sci U S A ; 114(29): 7671-7676, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28673974

RESUMEN

The partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells. We found that PALB2 associates with active genes through its major binding partner, MRG15, which recognizes histone H3 trimethylated at lysine 36 (H3K36me3) by the SETD2 methyltransferase. Missense mutations that ablate PALB2 binding to MRG15 confer elevated sensitivity to the topoisomerase inhibitor camptothecin (CPT) and increased levels of aberrant metaphase chromosomes and DNA stress in gene bodies, which were suppressed by preventing DNA replication. Remarkably, the level of PALB2 at genic regions was frequently decreased, rather than increased, upon CPT treatment. We propose that the steady-state presence of PALB2 at active genes, mediated through the SETD2/H3K36me3/MRG15 axis, ensures an immediate response to DNA stress and therefore effective protection of these regions during DNA replication. This study provides a conceptual advance in demonstrating that the constitutive chromatin association of repair factors plays a key role in the maintenance of genome stability and furthers our understanding of why PALB2 defects lead to human genome instability syndromes.


Asunto(s)
Cromatina/ultraestructura , Daño del ADN , Proteína del Grupo de Complementación N de la Anemia de Fanconi/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Factores de Transcripción/metabolismo , Proteína BRCA2/genética , Línea Celular Tumoral , Cromosomas/ultraestructura , Reparación del ADN , Replicación del ADN , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Concentración 50 Inhibidora , Mutación , Unión Proteica , Proteómica , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo
8.
Semin Cell Dev Biol ; 113: 1-2, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33741251
9.
Int J Cancer ; 136(12): 2961-6, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25388513

RESUMEN

Inhibition of type 1 IGF receptor (IGF-1R) sensitizes to DNA-damaging cancer treatments, and delays repair of DNA double strand breaks (DSBs) by non-homologous end-joining and homologous recombination (HR). In a recent screen for mediators of resistance to IGF-1R inhibitor AZ12253801, we identified RAD51, required for the strand invasion step of HR. These findings prompted us to test the hypothesis that IGF-1R-inhibited cells accumulate DSBs formed at endogenous DNA lesions, and depend on residual HR for their repair. Indeed, initial experiments showed time-dependent accumulation of γH2AX foci in IGF-1R -inhibited or -depleted prostate cancer cells. We then tested effects of suppressing HR, and found that RAD51 depletion enhanced AZ12253801 sensitivity in PTEN wild-type prostate cancer cells but not in cells lacking functional PTEN. Similar sensitization was induced in prostate cancer cells by depletion of BRCA2, required for RAD51 loading onto DNA, and in BRCA2(-/-) colorectal cancer cells, compared with isogenic BRCA2(+/-) cells. We also assessed chemical HR inhibitors, finding that RAD51 inhibitor BO2 blocked RAD51 focus formation and sensitized to AZ12253801. Finally, we tested CDK1 inhibitor RO-3306, which impairs HR by inhibiting CDK1-mediated BRCA1 phosphorylation. R0-3306 suppressed RAD51 focus formation consistent with HR attenuation, and sensitized prostate cancer cells to IGF-1R inhibition, with 2.4-fold reduction in AZ12253801 GI50 and 13-fold reduction in GI80. These data suggest that responses to IGF-1R inhibition are enhanced by genetic and chemical approaches to suppress HR, defining a population of cancers (PTEN wild-type, BRCA mutant) that may be intrinsically sensitive to IGF-1R inhibitory drugs.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Homóloga/genética , Receptor IGF Tipo 1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Western Blotting , Compuestos de Boro/farmacología , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Histonas/metabolismo , Recombinación Homóloga/efectos de los fármacos , Humanos , Isoxazoles/farmacología , Masculino , Microscopía Fluorescente , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Pirimidinas/farmacología , Quinolinas/farmacología , Interferencia de ARN , Recombinasa Rad51/antagonistas & inhibidores , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Receptor IGF Tipo 1/antagonistas & inhibidores , Tiazoles/farmacología
10.
EMBO Rep ; 13(2): 135-41, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22193777

RESUMEN

The partner and localizer of breast cancer 2 susceptibility protein (PALB2) is crucial for the repair of DNA damage by homologous recombination. Here, we report that chromatin-association motif (ChAM), an evolutionarily conserved motif in PALB2, is necessary and sufficient to mediate its chromatin association in both unperturbed and damaged cells. ChAM is distinct from the previously described PALB2 DNA-binding regions. Deletion of ChAM decreases PALB2 and Rad51 accumulation at DNA damage sites and confers cellular hypersensitivity to the genotoxic drug mitomycin C. These results suggest that PALB2 chromatin association via ChAM facilitates PALB2 function in the cellular resistance to DNA damage.


Asunto(s)
Cromatina/metabolismo , Reparación del ADN , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular , Secuencia Conservada/genética , Daño del ADN , Evolución Molecular , Proteína del Grupo de Complementación N de la Anemia de Fanconi , Recombinación Homóloga/genética , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Unión Proteica , Eliminación de Secuencia , Relación Estructura-Actividad
11.
Nucleic Acids Res ; 40(17): 8348-60, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22735704

RESUMEN

p21 is a well-established regulator of cell cycle progression. The role of p21 in DNA repair, however, remains poorly characterized. Here, we describe a critical role of p21 in a replication-coupled DNA double-strand break (DSB) repair that is mechanistically distinct from its cell cycle checkpoint function. We demonstrate that p21-deficient cells exhibit elevated chromatid-type aberrations, including gaps and breaks, dicentrics and radial formations, following exposure to several DSB-inducing agents. p21-/- cells also exhibit an increased DNA damage-inducible DNA-PKCS S2056 phosphorylation, indicative of elevated non-homologous DNA end joining. Concomitantly, p21-/- cells are defective in replication-coupled homologous recombination (HR), exhibiting decreased sister chromatid exchanges and HR-dependent repair as determined using a crosslinked GFP reporter assay. Importantly, we establish that the DSB hypersensitivity of p21-/- cells is associated with increased cyclin-dependent kinase (CDK)-dependent BRCA2 S3291 phosphorylation and MRE11 nuclear foci formation and can be rescued by inhibition of CDK or MRE11 nuclease activity. Collectively, our results uncover a novel mechanism by which p21 regulates the fidelity of replication-coupled DSB repair and the maintenance of chromosome stability distinct from its role in the G1-S phase checkpoint.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , Animales , Proteína BRCA2/metabolismo , Camptotecina/toxicidad , Inestabilidad Cromosómica , Reactivos de Enlaces Cruzados/toxicidad , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Etopósido/toxicidad , Puntos de Control de la Fase G1 del Ciclo Celular , Células HCT116 , Células HeLa , Humanos , Proteína Homóloga de MRE11 , Ratones , Mitomicina/toxicidad , Fosforilación , Reparación del ADN por Recombinación , Inhibidores de Topoisomerasa/toxicidad
12.
DNA Repair (Amst) ; 142: 103752, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39167890

RESUMEN

Quiescence is an important non-pathological state in which cells pause cell cycle progression temporarily, sometimes for decades, until they receive appropriate proliferative stimuli. Quiescent cells make up a significant proportion of the body, and maintaining genomic integrity during quiescence is crucial for tissue structure and function. While cells in quiescence are spared from DNA damage associated with DNA replication or mitosis, they are still exposed to various sources of endogenous DNA damage, including those induced by normal transcription and metabolism. As such, it is vital that cells retain their capacity to effectively repair lesions that may occur and return to the cell cycle without losing their cellular properties. Notably, while DNA repair pathways are often found to be downregulated in quiescent cells, emerging evidence suggests the presence of active or differentially regulated repair mechanisms. This review aims to provide a current understanding of DNA repair processes during quiescence in mammalian systems and sheds light on the potential pathological consequences of inefficient or inaccurate repair in quiescent cells.


Asunto(s)
Daño del ADN , Reparación del ADN , Inestabilidad Genómica , Humanos , Animales , Fase de Descanso del Ciclo Celular , Ciclo Celular , Replicación del ADN
13.
STAR Protoc ; 4(3): 102487, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549036

RESUMEN

Detecting DNA breaks in defined regions of the genome is critical to advancing our understanding of genome stability maintenance. Here, we present exo-FISH, a protocol to label exposed single-stranded DNA in defined repetitive regions of mammalian genomes by combining in vitro restriction enzyme digestion on fixed cells with fluorescence in situ hybridization (FISH). We describe steps for cell harvesting and fixation, slide treatments, and FISH probe hybridization. We then detail procedures for imaging and analysis. For complete details on the use and execution of this protocol, please refer to Saayman et al. (2023).1.


Asunto(s)
ADN , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Hibridación Fluorescente in Situ/métodos , ADN/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , ADN de Cadena Simple , Roturas del ADN , Mamíferos/genética
14.
Nat Struct Mol Biol ; 14(6): 468-74, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17515904

RESUMEN

The human breast cancer susceptibility gene BRCA2 is required for the regulation of RAD51-mediated homologous recombinational repair. BRCA2 interacts with RAD51 monomers, as well as nucleoprotein filaments, primarily though the conserved BRC motifs. The unrelated C-terminal region of BRCA2 also interacts with RAD51. Here we show that the BRCA2 C terminus interacts directly with RAD51 filaments, but not monomers, by binding an interface created by two adjacent RAD51 protomers. These interactions stabilize filaments so that they cannot be dissociated by association with BRC repeats. Interaction of the BRCA2 C terminus with the RAD51 filament causes a large movement of the flexible RAD51 N-terminal domain that is important in regulating filament dynamics. We suggest that interactions of the BRCA2 C-terminal region with RAD51 may facilitate efficient nucleation of RAD51 multimers on DNA and thereby stimulate recombination-mediated repair.


Asunto(s)
Proteína BRCA2/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Nucleoproteínas/metabolismo , Recombinasa Rad51/metabolismo , Proteínas Reguladoras de la Apoptosis , Proteína BRCA2/genética , Cromatografía en Gel , Reparación del ADN/fisiología , Ensayo de Cambio de Movilidad Electroforética , Humanos , Microscopía Electrónica , Modelos Biológicos , Modelos Moleculares , Nucleoproteínas/ultraestructura , Unión Proteica , Recombinasa Rad51/genética
15.
FEBS J ; 289(9): 2409-2428, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33792193

RESUMEN

DNA double-strand breaks (DSBs) can result from both exogenous and endogenous sources and are potentially toxic lesions to the human genome. If improperly repaired, DSBs can threaten genome integrity and contribute to premature ageing, neurodegenerative disorders and carcinogenesis. Through decades of work on genome stability, it has become evident that certain regions of the genome are inherently more prone to breakage than others, known as genome instability hotspots. Recent advancements in sequencing-based technologies now enable the profiling of genome-wide distributions of DSBs, also known as breakomes, to systematically map these instability hotspots. Here, we review the application of these technologies and their implications for our current understanding of the genomic regions most likely to drive genome instability. These breakomes ultimately highlight both new and established breakage hotspots including actively transcribed regions, loop boundaries and early-replicating regions of the genome. Further, these breakomes challenge the paradigm that DNA breakage primarily occurs in hard-to-replicate regions. With these advancements, we begin to gain insights into the biological mechanisms both invoking and protecting against genome instability.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Animales , ADN/genética , Reparación del ADN/genética , Genoma Humano , Inestabilidad Genómica , Humanos , Mamíferos/genética
16.
Elife ; 112022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36269050

RESUMEN

The tumour suppressor PALB2 stimulates RAD51-mediated homologous recombination (HR) repair of DNA damage, whilst its steady-state association with active genes protects these loci from replication stress. Here, we report that the lysine acetyltransferases 2A and 2B (KAT2A/2B, also called GCN5/PCAF), two well-known transcriptional regulators, acetylate a cluster of seven lysine residues (7K-patch) within the PALB2 chromatin association motif (ChAM) and, in this way, regulate context-dependent PALB2 binding to chromatin. In unperturbed cells, the 7K-patch is targeted for KAT2A/2B-mediated acetylation, which in turn enhances the direct association of PALB2 with nucleosomes. Importantly, DNA damage triggers a rapid deacetylation of ChAM and increases the overall mobility of PALB2. Distinct missense mutations of the 7K-patch render the mode of PALB2 chromatin binding, making it either unstably chromatin-bound (7Q) or randomly bound with a reduced capacity for mobilisation (7R). Significantly, both of these mutations confer a deficiency in RAD51 foci formation and increase DNA damage in S phase, leading to the reduction of overall cell survival. Thus, our study reveals that acetylation of the ChAM 7K-patch acts as a molecular switch to enable dynamic PALB2 shuttling for HR repair while protecting active genes during DNA replication.


Asunto(s)
Cromatina , Proteínas Supresoras de Tumor , Acetilación , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Reparación del ADN , Daño del ADN , Nucleosomas
17.
Nature ; 434(7033): 598-604, 2005 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-15800615

RESUMEN

Inherited mutations in BRCA2 are associated with a predisposition to early-onset breast cancers. The underlying basis of tumorigenesis is thought to be linked to defects in DNA double-strand break repair by homologous recombination. Here we show that the carboxy-terminal region of BRCA2, which interacts directly with the essential recombination protein RAD51, contains a site (serine 3291; S3291) that is phosphorylated by cyclin-dependent kinases. Phosphorylation of S3291 is low in S phase when recombination is active, but increases as cells progress towards mitosis. This modification blocks C-terminal interactions between BRCA2 and RAD51. However, DNA damage overcomes cell cycle regulation by decreasing S3291 phosphorylation and stimulating interactions with RAD51. These results indicate that S3291 phosphorylation might provide a molecular switch to regulate RAD51 recombination activity, providing new insight into why BRCA2 C-terminal deletions lead to radiation sensitivity and cancer predisposition.


Asunto(s)
Proteína BRCA2/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Reparación del ADN/genética , Recombinación Genética/genética , Secuencia de Aminoácidos , Animales , Proteína BRCA2/química , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Datos de Secuencia Molecular , Señales de Localización Nuclear , Fosforilación , Unión Proteica , Recombinasa Rad51 , Eliminación de Secuencia/genética
18.
Nat Commun ; 12(1): 5380, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508092

RESUMEN

The RAD51 recombinase plays critical roles in safeguarding genome integrity, which is fundamentally important for all living cells. While interphase functions of RAD51 in maintaining genome stability are well-characterised, its role in mitosis remains contentious. In this study, we show that RAD51 protects under-replicated DNA in mitotic human cells and, in this way, promotes mitotic DNA synthesis (MiDAS) and successful chromosome segregation. In cells experiencing mild replication stress, MiDAS was detected irrespective of mitotically generated DNA damage. MiDAS broadly required de novo RAD51 recruitment to single-stranded DNA, which was supported by the phosphorylation of RAD51 by the key mitotic regulator Polo-like kinase 1. Importantly, acute inhibition of MiDAS delayed anaphase onset and induced centromere fragility, suggesting a mechanism that prevents the satisfaction of the spindle assembly checkpoint while chromosomal replication remains incomplete. This study hence identifies an unexpected function of RAD51 in promoting genomic stability in mitosis.


Asunto(s)
Anafase/genética , Cromatina/metabolismo , Reparación del ADN , Puntos de Control de la Fase M del Ciclo Celular/genética , Recombinasa Rad51/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Segregación Cromosómica , ADN/biosíntesis , Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Humanos , Microscopía Intravital , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quinasa Tipo Polo 1
19.
Cell Signal ; 87: 110106, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34363951

RESUMEN

Monopolar spindle-one binder (MOBs) proteins are evolutionarily conserved and contribute to various cellular signalling pathways. Recently, we reported that hMOB2 functions in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest in untransformed cells. However, the question of how hMOB2 protects cells from endogenous DNA damage accumulation remained enigmatic. Here, we uncover hMOB2 as a regulator of double-strand break (DSB) repair by homologous recombination (HR). hMOB2 supports the phosphorylation and accumulation of the RAD51 recombinase on resected single-strand DNA (ssDNA) overhangs. Physiologically, hMOB2 expression supports cancer cell survival in response to DSB-inducing anti-cancer compounds. Specifically, loss of hMOB2 renders ovarian and other cancer cells more vulnerable to FDA-approved PARP inhibitors. Reduced MOB2 expression correlates with increased overall survival in patients suffering from ovarian carcinoma. Taken together, our findings suggest that hMOB2 expression may serve as a candidate stratification biomarker of patients for HR-deficiency targeted cancer therapies, such as PARP inhibitor treatments.


Asunto(s)
Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Recombinación Homóloga , Humanos , Neoplasias/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
20.
DNA Repair (Amst) ; 8(1): 6-18, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18832049

RESUMEN

The maintenance of genome integrity is essential for the regulation of cell proliferation and differentiation. DNA must be accurately duplicated and segregated to daughter cells at cell division, a process that is primarily regulated by cyclin-dependent kinases (CDKs). During cell growth, however, it is inevitable that DNA breaks will occur due to endogenous and exogenous stresses. Interestingly, there is increasing evidence that the catalytic activities of CDKs play critical roles in the DNA damage response, especially in the case of damage repaired by the homologous recombination (HR) pathway. In this review, we outline current knowledge of CDK regulation and its roles both in the unperturbed cell cycle and in DNA damage responses, and discuss the physiological roles of CDKs in HR repair.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Reparación del ADN/fisiología , Animales , Proteína BRCA2/metabolismo , Ciclo Celular , División Celular , Roturas del ADN de Doble Cadena , Daño del ADN , Humanos , Recombinasa Rad51/metabolismo , RecQ Helicasas/metabolismo , Recombinación Genética , Proteína de Replicación A/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA