RESUMEN
Radiomics analysis of [18F]-fluorodeoxyglucose ([18F]-FDG) PET images could be leveraged for personalised cancer medicine. However, the inherent sensitivity of radiomic features to intensity discretisation and voxel interpolation complicates its clinical translation. In this work, we evaluated the robustness of tumour [18F]-FDG-PET radiomic features to 174 different variations in intensity resolution or voxel size, and determined whether implementing parameter range conditions or dependency corrections could improve their robustness. Using 485 patient images spanning three cancer types: non-small cell lung cancer (NSCLC), melanoma, and lymphoma, we observed features were more sensitive to intensity discretisation than voxel interpolation, especially texture features. In most of our investigations, the majority of non-robust features could be made robust by applying parameter range conditions. Correctable features, which were generally fewer than conditionally robust, showed systematic dependence on bin configuration or voxel size that could be minimised by applying corrections based on simple mathematical equations. Melanoma images exhibited limited robustness and correctability relative to NSCLC and lymphoma. Our study provides an in-depth characterisation of the sensitivity of [18F]-FDG-PET features to image processing variations and reinforces the need for careful selection of imaging biomarkers prior to any clinical application.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Fluorodesoxiglucosa F18 , Procesamiento de Imagen Asistido por Computador , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Linfoma/diagnóstico por imagen , Linfoma/patología , Radiofármacos , Melanoma/diagnóstico por imagen , Melanoma/patología , Neoplasias/diagnóstico por imagen , Neoplasias/patología , RadiómicaRESUMEN
Uncertainty quantification in automated image analysis is highly desired in many applications. Typically, machine learning models in classification or segmentation are only developed to provide binary answers; however, quantifying the uncertainty of the models can play a critical role for example in active learning or machine human interaction. Uncertainty quantification is especially difficult when using deep learning-based models, which are the state-of-the-art in many imaging applications. The current uncertainty quantification approaches do not scale well in high-dimensional real-world problems. Scalable solutions often rely on classical techniques, such as dropout, during inference or training ensembles of identical models with different random seeds to obtain a posterior distribution. In this paper, we present the following contributions. First, we show that the classical approaches fail to approximate the classification probability. Second, we propose a scalable and intuitive framework for uncertainty quantification in medical image segmentation that yields measurements that approximate the classification probability. Third, we suggest the usage of k-fold cross-validation to overcome the need for held out calibration data. Lastly, we motivate the adoption of our method in active learning, creating pseudo-labels to learn from unlabeled images and human-machine collaboration.
Asunto(s)
Aprendizaje Profundo , Humanos , Incertidumbre , Probabilidad , Calibración , Procesamiento de Imagen Asistido por ComputadorRESUMEN
The National COVID-19 Chest Imaging Database (NCCID) is a centralized UK database of thoracic imaging and corresponding clinical data. It is made available by the National Health Service Artificial Intelligence (NHS AI) Lab to support the development of machine learning tools focused on Coronavirus Disease 2019 (COVID-19). A bespoke cleaning pipeline for NCCID, developed by the NHSx, was introduced in 2021. We present an extension to the original cleaning pipeline for the clinical data of the database. It has been adjusted to correct additional systematic inconsistencies in the raw data such as patient sex, oxygen levels and date values. The most important changes will be discussed in this paper, whilst the code and further explanations are made publicly available on GitLab. The suggested cleaning will allow global users to work with more consistent data for the development of machine learning tools without being an expert. In addition, it highlights some of the challenges when working with clinical multi-center data and includes recommendations for similar future initiatives.
Asunto(s)
COVID-19 , Tórax , Humanos , Inteligencia Artificial , Aprendizaje Automático , Medicina Estatal , Radiografía Torácica , Tórax/diagnóstico por imagenRESUMEN
Artificial intelligence (AI) methods applied to healthcare problems have shown enormous potential to alleviate the burden of health services worldwide and to improve the accuracy and reproducibility of predictions. In particular, developments in computer vision are creating a paradigm shift in the analysis of radiological images, where AI tools are already capable of automatically detecting and precisely delineating tumours. However, such tools are generally developed in technical departments that continue to be siloed from where the real benefit would be achieved with their usage. Significant effort still needs to be made to make these advancements available, first in academic clinical research and ultimately in the clinical setting. In this paper, we demonstrate a prototype pipeline based entirely on open-source software and free of cost to bridge this gap, simplifying the integration of tools and models developed within the AI community into the clinical research setting, ensuring an accessible platform with visualisation applications that allow end-users such as radiologists to view and interact with the outcome of these AI tools.
RESUMEN
Background: High-Grade Serous Ovarian Carcinoma (HGSOC) is the most prevalent and lethal subtype of ovarian cancer, but has a paucity of clinically-actionable biomarkers due to high degrees of multi-level heterogeneity. Radiogenomics markers have the potential to improve prediction of patient outcome and treatment response, but require accurate multimodal spatial registration between radiological imaging and histopathological tissue samples. Previously published co-registration work has not taken into account the anatomical, biological and clinical diversity of ovarian tumours. Methods: In this work, we developed a research pathway and an automated computational pipeline to produce lesion-specific three-dimensional (3D) printed moulds based on preoperative cross-sectional CT or MRI of pelvic lesions. Moulds were designed to allow tumour slicing in the anatomical axial plane to facilitate detailed spatial correlation of imaging and tissue-derived data. Code and design adaptations were made following each pilot case through an iterative refinement process. Results: Five patients with confirmed or suspected HGSOC who underwent debulking surgery between April and December 2021 were included in this prospective study. Tumour moulds were designed and 3D-printed for seven pelvic lesions, covering a range of tumour volumes (7 to 133 cm3) and compositions (cystic and solid proportions). The pilot cases informed innovations to improve specimen and subsequent slice orientation, through the use of 3D-printed tumour replicas and incorporation of a slice orientation slit in the mould design, respectively. The overall research pathway was compatible with implementation within the clinically determined timeframe and treatment pathway for each case, involving multidisciplinary clinical professionals from Radiology, Surgery, Oncology and Histopathology Departments. Conclusions: We developed and refined a computational pipeline that can model lesion-specific 3D-printed moulds from preoperative imaging for a variety of pelvic tumours. This framework can be used to guide comprehensive multi-sampling of tumour resection specimens.
RESUMEN
High grade serous ovarian carcinoma (HGSOC) is a highly heterogeneous disease that typically presents at an advanced, metastatic state. The multi-scale complexity of HGSOC is a major obstacle to predicting response to neoadjuvant chemotherapy (NACT) and understanding critical determinants of response. Here we present a framework to predict the response of HGSOC patients to NACT integrating baseline clinical, blood-based, and radiomic biomarkers extracted from all primary and metastatic lesions. We use an ensemble machine learning model trained to predict the change in total disease volume using data obtained at diagnosis (n = 72). The model is validated in an internal hold-out cohort (n = 20) and an independent external patient cohort (n = 42). In the external cohort the integrated radiomics model reduces the prediction error by 8% with respect to the clinical model, achieving an AUC of 0.78 for RECIST 1.1 classification compared to 0.47 for the clinical model. Our results emphasize the value of including radiomics data in integrative models of treatment response and provide methods for developing new biomarker-based clinical trials of NACT in HGSOC.
Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Terapia Neoadyuvante/métodos , Biomarcadores de Tumor/genéticaRESUMEN
PURPOSE: To determine if pelvic/ovarian and omental lesions of ovarian cancer can be reliably segmented on computed tomography (CT) using fully automated deep learning-based methods. METHODS: A deep learning model for the two most common disease sites of high-grade serous ovarian cancer lesions (pelvis/ovaries and omentum) was developed and compared against the well-established "no-new-Net" framework and unrevised trainee radiologist segmentations. A total of 451 CT scans collected from four different institutions were used for training (n = 276), evaluation (n = 104) and testing (n = 71) of the methods. The performance was evaluated using the Dice similarity coefficient (DSC) and compared using a Wilcoxon test. RESULTS: Our model outperformed no-new-Net for the pelvic/ovarian lesions in cross-validation, on the evaluation and test set by a significant margin (p values being 4 × 10-7, 3 × 10-4, 4 × 10-2, respectively), and for the omental lesions on the evaluation set (p = 1 × 10-3). Our model did not perform significantly differently in segmenting pelvic/ovarian lesions (p = 0.371) compared to a trainee radiologist. On an independent test set, the model achieved a DSC performance of 71 ± 20 (mean ± standard deviation) for pelvic/ovarian and 61 ± 24 for omental lesions. CONCLUSION: Automated ovarian cancer segmentation on CT scans using deep neural networks is feasible and achieves performance close to a trainee-level radiologist for pelvic/ovarian lesions. RELEVANCE STATEMENT: Automated segmentation of ovarian cancer may be used by clinicians for CT-based volumetric assessments and researchers for building complex analysis pipelines. KEY POINTS: ⢠The first automated approach for pelvic/ovarian and omental ovarian cancer lesion segmentation on CT images has been presented. ⢠Automated segmentation of ovarian cancer lesions can be comparable with manual segmentation of trainee radiologists. ⢠Careful hyperparameter tuning can provide models significantly outperforming strong state-of-the-art baselines.
Asunto(s)
Aprendizaje Profundo , Quistes Ováricos , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos XRESUMEN
Photoacoustic imaging is an increasingly popular method of exploring the tumour microenvironment, which can provide insight into tumour oxygenation status and potentially treatment response assessment. Currently, the measurements most commonly performed on such images are the mean and median of the pixel values of the tumour volumes of interest. We investigated expanding the set of measurements that can be extracted from these images by adding radiomic features. In particular, we found that Skewness was sensitive to differences between basal and luminal patient derived xenograft cancer models with an [Formula: see text] of 0.86, and that it was robust to variations in confounding factors such as reconstruction type and wavelength. We also built discriminant models with radiomic features that were correlated with the underlying tumour model and were independent from each other. We then ranked features by their importance in the model. Skewness was again found to be an important feature, as were 10th Percentile, Root Mean Squared, and several other texture-based features. In summary, this paper proposes a methodology to select radiomic features extracted from photoacoustic images that are robust to changes in acquisition and reconstruction parameters, and discusses features found to have discriminating power between the underlying tumour models in a pre-clinical dataset.
Asunto(s)
Neoplasias , Técnicas Fotoacústicas , Animales , Diagnóstico por Imagen , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Neoplasias/diagnóstico por imagen , Microambiente TumoralRESUMEN
Background: Pathological response to neoadjuvant treatment for patients with high-grade serous ovarian carcinoma (HGSOC) is assessed using the chemotherapy response score (CRS) for omental tumor deposits. The main limitation of CRS is that it requires surgical sampling after initial neoadjuvant chemotherapy (NACT) treatment. Earlier and non-invasive response predictors could improve patient stratification. We developed computed tomography (CT) radiomic measures to predict neoadjuvant response before NACT using CRS as a gold standard. Methods: Omental CT-based radiomics models, yielding a simplified fully interpretable radiomic signature, were developed using Elastic Net logistic regression and compared to predictions based on omental tumor volume alone. Models were developed on a single institution cohort of neoadjuvant-treated HGSOC (n = 61; 41% complete response to NCT) and tested on an external test cohort (n = 48; 21% complete response). Results: The performance of the comprehensive radiomics models and the fully interpretable radiomics model was significantly higher than volume-based predictions of response in both the discovery and external test sets when assessed using G-mean (geometric mean of sensitivity and specificity) and NPV, indicating high generalizability and reliability in identifying non-responders when using radiomics. The performance of a fully interpretable model was similar to that of comprehensive radiomics models. Conclusions: CT-based radiomics allows for predicting response to NACT in a timely manner and without the need for abdominal surgery. Adding pre-NACT radiomics to volumetry improved model performance for predictions of response to NACT in HGSOC and was robust to external testing. A radiomic signature based on five robust predictive features provides improved clinical interpretability and may thus facilitate clinical acceptance and application.
RESUMEN
Radiomic image features are becoming a promising non-invasive method to obtain quantitative measurements for tumour classification and therapy response assessment in oncological research. However, despite its increasingly established application, there is a need for standardisation criteria and further validation of feature robustness with respect to imaging acquisition parameters. In this paper, the robustness of radiomic features extracted from computed tomography (CT) images is evaluated for liver tumour and muscle, comparing the values of the features in images reconstructed with two different slice thicknesses of 2.0 mm and 5.0 mm. Novel approaches are presented to address the intrinsic dependencies of texture radiomic features, choosing the optimal number of grey levels and correcting for the dependency on volume. With the optimal values and corrections, feature values are compared across thicknesses to identify reproducible features. Normalisation using muscle regions is also described as an alternative approach. With either method, a large fraction of features (75-90%) was found to be highly robust (< 25% difference). The analyses were performed on a homogeneous CT dataset of 43 patients with hepatocellular carcinoma, and consistent results were obtained for both tumour and muscle tissue. Finally, recommended guidelines are included for radiomic studies using variable slice thickness.
Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Hígado/diagnóstico por imagen , Músculos/diagnóstico por imagen , Radiometría/métodos , Tomografía Computarizada por Rayos X/métodos , Carcinoma Hepatocelular/patología , Humanos , Hígado/patología , Músculos/patología , Estudios RetrospectivosRESUMEN
Artificial intelligence (AI) provides a promising substitution for streamlining COVID-19 diagnoses. However, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalised model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution under a federated learning framework (FL) without data sharing. Here we show that our FL model outperformed all the local models by a large yield (test sensitivity /specificity in China: 0.973/0.951, in the UK: 0.730/0.942), achieving comparable performance with a panel of professional radiologists. We further evaluated the model on the hold-out (collected from another two hospitals leaving out the FL) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK. Collectively, our work advanced the prospects of utilising federated learning for privacy-preserving AI in digital health.