Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Physiol Endocrinol Metab ; 311(3): E649-60, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27507552

RESUMEN

Impaired skeletal muscle mitochondrial fatty acid oxidation (mFAO) has been implicated in the etiology of insulin resistance. Carnitine palmitoyltransferase-1 (CPT1) is a key regulatory enzyme of mFAO whose activity is inhibited by malonyl-CoA, a lipogenic intermediate. Whereas increasing CPT1 activity in vitro has been shown to exert a protective effect against lipid-induced insulin resistance in skeletal muscle cells, only a few studies have addressed this issue in vivo. We thus examined whether a direct modulation of muscle CPT1/malonyl-CoA partnership is detrimental or beneficial for insulin sensitivity in the context of diet-induced obesity. By using a Cre-LoxP recombination approach, we generated mice with skeletal muscle-specific and inducible expression of a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA inhibition. When fed control chow, homozygous CPT1mt transgenic (dbTg) mice exhibited decreased CPT1 sensitivity to malonyl-CoA inhibition in isolated muscle mitochondria, which was sufficient to substantially increase ex vivo muscle mFAO capacity and whole body fatty acid utilization in vivo. Moreover, dbTg mice were less prone to high-fat/high-sucrose (HFHS) diet-induced insulin resistance and muscle lipotoxicity despite similar body weight gain, adiposity, and muscle malonyl-CoA content. Interestingly, these CPT1mt-protective effects in dbTg-HFHS mice were associated with preserved muscle insulin signaling, increased muscle glycogen content, and upregulation of key genes involved in muscle glucose metabolism. These beneficial effects of muscle CPT1mt expression suggest that a direct modulation of the malonyl-CoA/CPT1 partnership in skeletal muscle could represent a potential strategy to prevent obesity-induced insulin resistance.


Asunto(s)
Carnitina O-Palmitoiltransferasa/biosíntesis , Dieta Alta en Grasa/efectos adversos , Sacarosa en la Dieta/efectos adversos , Resistencia a la Insulina , Malonil Coenzima A/metabolismo , Músculo Esquelético/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/genética , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Masculino , Malonil Coenzima A/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Mutación/genética , Obesidad/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
FASEB J ; 29(6): 2473-83, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25713059

RESUMEN

Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine palmitoyltransferase 1 (CPT1) being the key regulatory enzyme. Whether increasing muscle mFAO affects skeletal muscle physiology in adulthood actually remains unknown. To investigate this, we used in vivo electrotransfer technology to express in mouse tibialis anterior (TA), a fast/glycolytic muscle, a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA, its physiologic inhibitor. In young (2-mo-old) adult mice, muscle CPT1mt expression enhanced mFAO (+40%), but also increased the percentage of oxidative fibers (+28%), glycogen content, and capillary-to-fiber density (+45%). This CPT1mt-induced muscle remodeling, which mimicked exercise-induced oxidative phenotype, led to a greater resistance to muscle fatigue. In the context of aging, characterized by sarcopenia and reduced oxidative capacity, CPT1mt expression in TAs from aged (20-mo-old) mice partially reversed aging-associated sarcopenia and fiber-type transition, and increased muscle capillarity. These findings provide evidence that mFAO regulates muscle phenotype and may be a potential target to combat age-related decline in muscle function.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Factores de Edad , Animales , Western Blotting , Carnitina O-Palmitoiltransferasa/genética , Expresión Génica , Glucógeno/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias Musculares/fisiología , Fatiga Muscular/genética , Fatiga Muscular/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiología , Mutación , Oxidación-Reducción , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcopenia/genética , Sarcopenia/fisiopatología , Transfección
3.
J Hepatol ; 56(3): 632-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22037024

RESUMEN

BACKGROUND & AIMS: Despite major public health concern, therapy for non-alcoholic fatty liver, the liver manifestation of the metabolic syndrome often associated with insulin resistance (IR), remains elusive. Strategies aiming to decrease liver lipogenesis effectively corrected hepatic steatosis and IR in obese animals. However, they also indirectly increased mitochondrial long-chain fatty acid oxidation (mFAO) by decreasing malonyl-CoA, a lipogenic intermediate, which is the allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT1A), the key enzyme of mFAO. We thus addressed whether enhancing hepatic mFAO capacity, through a direct modulation of liver CPT1A/malonyl-CoA partnership, can reverse an already established hepatic steatosis and IR in obese mice. METHODS: Adenovirus-mediated liver expression of a malonyl-CoA-insensitive CPT1A (CPT1mt) in high-fat/high-sucrose (HF/HS) diet-induced or genetically (ob/ob) obese mice was followed by metabolic and physiological investigations. RESULTS: In association with increased hepatic mFAO capacity, liver CPT1mt expression improved glucose tolerance and insulin response to a glucose load in HF/HS and ob/ob mice, showing increased insulin sensitivity, and corrected IR in ob/ob mice. Surprisingly, hepatic steatosis was not affected in CPT1mt-expressing obese mice, indicating a clear dissociation between hepatic steatosis and IR. Moreover, liver CPT1mt expression rescued HF/HS-induced impaired hepatic insulin signaling at the level of IRS-1, IRS-2, Akt, and GSK-3ß, most likely through the observed decrease in the HF/HS-induced accumulation of lipotoxic lipids, oxidative stress, and JNK activation. CONCLUSIONS: Enhancing hepatic mFAO capacity is sufficient to reverse a state of IR and glucose intolerance in obese mice independently of hepatic steatosis.


Asunto(s)
Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Intolerancia a la Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Mitocondrias Hepáticas/metabolismo , Obesidad/metabolismo , Adenoviridae/genética , Adiposidad/fisiología , Animales , Peso Corporal/fisiología , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Ácido Glucárico/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Malonil Coenzima A/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Oxidación-Reducción
4.
Biochem J ; 420(3): 429-38, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19302064

RESUMEN

Liver mitochondrial beta-oxidation of LCFAs (long-chain fatty acids) is tightly regulated through inhibition of CPT1A (carnitine palmitoyltransferase 1A) by malonyl-CoA, an intermediate of lipogenesis stimulated by glucose and insulin. Moreover, CPT1A sensitivity to malonyl-CoA inhibition varies markedly depending on the physiopathological state of the animal. In the present study, we asked whether an increase in CPT1A activity solely or in association with a decreased malonyl-CoA sensitivity could, even in the presence of high glucose and insulin concentrations, maintain a sustained LCFA beta-oxidation and/or protect from triacylglycerol (triglyceride) accumulation in hepatocytes. We have shown that adenovirus-mediated expression of rat CPT1wt (wild-type CPT1A) and malonyl-CoA-insensitive CPT1mt (CPT1AM593S mutant) in cultured fed rat hepatocytes counteracted the inhibition of oleate beta-oxidation induced by 20 mM glucose/10 nM insulin. Interestingly, the glucose/insulin-induced cellular triacylglycerol accumulation was prevented, both in the presence and absence of exogenous oleate. This resulted from the generation of a metabolic switch allowing beta-oxidation of de novo synthesized LCFAs, which occurred without alteration in glucose oxidation and glycogen synthesis. Moreover, CPT1mt expression was more effective than CPT1wt overexpression to counteract glucose/insulin effects, demonstrating that control of CPT1A activity by malonyl-CoA is an essential driving force for hepatic LCFA metabolic fate. In conclusion, the present study highlights that CPT1A is a prime target to increase hepatic LCFA beta-oxidation and that acting directly on the degree of its malonyl-CoA sensitivity may be a relevant strategy to prevent and/or correct hepatic steatosis.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Adenoviridae/genética , Animales , Carnitina O-Palmitoiltransferasa/genética , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Glucosa/metabolismo , Glucosa/farmacología , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Immunoblotting , Insulina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/citología , Hígado/enzimología , Hígado/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Mutación , Oxidación-Reducción , Ratas , Ratas Wistar , Transfección , Triglicéridos/metabolismo
5.
Biochem J ; 387(Pt 1): 67-76, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15498023

RESUMEN

We have previously proposed that changes in malonyl-CoA sensitivity of rat L-CPT1 (liver carnitine palmitoyltransferase 1) might occur through modulation of interactions between its cytosolic N- and C-terminal domains. By using a cross-linking strategy based on the trypsin-resistant folded state of L-CPT1, we have now shown the existence of such N-C (N- and C-terminal domain) intramolecular interactions both in wild-type L-CPT1 expressed in Saccharomyces cerevisiae and in the native L-CPT1 in fed rat liver mitochondria. These N-C intramolecular interactions were found to be either totally (48-h starvation) or partially abolished (streptozotocin-induced diabetes) in mitochondria isolated from animals in which the enzyme displays decreased malonyl-CoA sensitivity. Moreover, increasing the outer membrane fluidity of fed rat liver mitochondria with benzyl alcohol in vitro, which induced malonyl-CoA desensitization, attenuated the N-C interactions. This indicates that the changes in malonyl-CoA sensitivity of L-CPT1 observed in mitochondria from starved and diabetic rats, previously shown to be associated with altered membrane composition in vivo, are partly due to the disruption of N-C interactions. Finally, we show that mutations in the regulatory regions of the N-terminal domain affect the ability of the N terminus to interact physically with the C-terminal domain, irrespective of whether they increased [S24A (Ser24-->Ala)/Q30A] or abrogated (E3A) malonyl-CoA sensitivity. Moreover, we have identified the region immediately N-terminal to transmembrane domain 1 (residues 40-47) as being involved in the chemical N-C cross-linking. These observations provide the first demonstration by a physico-chemical method that L-CPT1 adopts different conformational states that differ in their degree of proximity between the cytosolic N-terminal and the C-terminal domains, and that this determines its degree of malonyl-CoA sensitivity depending on the physiological state.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Hígado/enzimología , Malonil Coenzima A/metabolismo , Péptidos/metabolismo , Animales , Alcohol Bencilo/farmacología , Carnitina O-Palmitoiltransferasa/biosíntesis , Carnitina O-Palmitoiltransferasa/genética , Reactivos de Enlaces Cruzados/metabolismo , Reactivos de Enlaces Cruzados/farmacología , Citosol/enzimología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/metabolismo , Dieta , Masculino , Fluidez de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Péptidos/genética , Mutación Puntual/genética , Estructura Terciaria de Proteína , Ratas , Ratas Wistar , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Inanición/enzimología , Inanición/metabolismo , Estreptozocina , Especificidad por Sustrato/efectos de los fármacos , Transfección/métodos
6.
Cancer Res ; 74(14): 3971-82, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24853548

RESUMEN

Cancer cells tilt their energy production away from oxidative phosphorylation (OXPHOS) toward glycolysis during malignant progression, even when aerobic metabolism is available. Reversing this phenomenon, known as the Warburg effect, may offer a generalized anticancer strategy. In this study, we show that overexpression of the mitochondrial membrane transport protein UCP2 in cancer cells is sufficient to restore a balance toward oxidative phosphorylation and to repress malignant phenotypes. Altered expression of glycolytic and oxidative enzymes mediated the effects of this metabolic shift. Notably, UCP2 overexpression increased signaling from the master energy-regulating kinase, adenosine monophosphate-activated protein kinase, while downregulating expression of hypoxia-induced factor. In support of recent new evidence about UCP2 function, we found that UCP2 did not function in this setting as a membrane potential uncoupling protein, but instead acted to control routing of mitochondria substrates. Taken together, our results define a strategy to reorient mitochondrial function in cancer cells toward OXPHOS that restricts their malignant phenotype.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Canales Iónicos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Expresión Génica , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Canales Iónicos/genética , Melanoma Experimental , Ratones , Proteínas Mitocondriales/genética , Oxidación-Reducción , Fosforilación Oxidativa , Estrés Oxidativo , Proteína Desacopladora 2
7.
J Biol Chem ; 282(37): 26908-26916, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17650509

RESUMEN

Carnitine palmitoyltransferase (CPT) 1A catalyzes the rate-limiting step in the transport of long chain acyl-CoAs from cytoplasm to the mitochondrial matrix by converting them to acylcarnitines. Located within the outer mitochondrial membrane, CPT1A activity is inhibited by malonyl-CoA, its allosteric inhibitor. In this study, we investigate for the first time the quaternary structure of rat CPT1A. Chemical cross-linking studies using intact mitochondria isolated from fed rat liver or from Saccharomyces cerevisiae expressing CPT1A show that CPT1A self-assembles into an oligomeric complex. Size exclusion chromatography experiments using solubilized mitochondrial extracts suggest that the fundamental unit of its quaternary structure is a trimer. When studied in blue native-PAGE, the CPT1A hexamer could be observed, however, suggesting that under these native conditions CPT1A trimers might be arranged as dimers. Moreover, the oligomeric state of CPT1A was found unchanged by starvation and by streptozotocin-induced diabetes, conditions characterized by changes in malonyl-CoA sensitivity of CPT1A. Finally, gel filtration analysis of several yeast-expressed chimeric CPTs demonstrates that the first 147 N-terminal residues of CPT1A, encompassing its two transmembrane segments, trigger trimerization independently of its catalytic C-terminal domain. Deletion of residues 1-82, including transmembrane 1, did not abrogate oligomerization, but the latter is limited to a trimer by the presence of the large catalytic C-terminal domain on the cytosolic face of mitochondria. Based on these findings, we proposed that the oligomeric structure of CPT1A would allow the newly formed acylcarnitines to gain direct access into the intermembrane space, hence facilitating substrate channeling.


Asunto(s)
Carnitina O-Palmitoiltransferasa/química , Hígado/enzimología , Membranas Mitocondriales/enzimología , Animales , Cromatografía en Gel , Diabetes Mellitus Experimental/enzimología , Masculino , Estructura Cuaternaria de Proteína , Ratas , Ratas Wistar , Inanición
8.
J Cell Sci ; 117(Pt 10): 1937-44, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15039461

RESUMEN

We previously reported that sterol-regulatory-element-binding-protein-1c (SREBP-1c) mediates insulin upregulation of genes encoding glycolytic and lipogenic enzymes in rat skeletal muscle. Here, we assessed whether glucose could regulate gene expression in contracting myotubes deriving from cultured muscle satellite cells. Glucose uptake increased twofold after a 30 minute treatment with a high glucose concentration, suggesting an acute glucose-stimulated glucose uptake. Time-course experiments showed that, within 3 hours, glucose stimulated the expression of hexokinase II, fatty acid synthase and acetyl-CoA-carboxylase-2 proteins, leading to an increased lipogenic flux and intracellular lipid accumulation in contracting myotubes. Furthermore, kinetic experiments indicated that glucose upregulated SREBP-1c precursor and nuclear proteins within 30 minutes, SREBP-1c nuclear translocation being confirmed using immunocytochemistry. In addition, the knockdown of SREBP-1 mRNA using a RNA-interference technique totally abrogated the glucose-induced upregulation of lipogenic enzymes, indicating that SREBP-1c mediates the action of glucose on these genes in rat skeletal muscle. Finally, we found that glucose rapidly stimulated SREBP-1c maturation through a Jak/STAT dependent pathway. We propose that increased intramuscular lipid accumulation associated with muscle insulin resistance in obesity or type-2 diabetes could arise partly from de novo fatty acid synthesis in skeletal muscle.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Unión al ADN/metabolismo , Músculos/citología , Factores de Transcripción/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Transporte Activo de Núcleo Celular , Animales , Western Blotting , Núcleo Celular/metabolismo , Células Cultivadas , Medio de Cultivo Libre de Suero/metabolismo , Medio de Cultivo Libre de Suero/farmacología , Citoplasma/metabolismo , Ácido Graso Sintasas/metabolismo , Glucosa/metabolismo , Glucosa/farmacocinética , Glucólisis , Hexoquinasa/metabolismo , Inmunohistoquímica , Insulina/metabolismo , Cinética , Metabolismo de los Lípidos , Masculino , Músculo Esquelético/metabolismo , Músculos/metabolismo , Fosforilación , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3 , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Factores de Tiempo , Transactivadores , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA