Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biotechnol Bioeng ; 120(9): 2685-2699, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37060550

RESUMEN

Extracellular vesicles (EVs) are a new therapeutic modality with the promise to treat many diseases through their ability to deliver diverse molecular cargo. As with other emerging modalities transitioning into the industrialization phase, all aspects of the manufacturing process are rich with opportunities to enhance the ability to deliver these medicines to patients. With the goal of improving cell culture EV productivity, we have utilized high throughput siRNA screens to identify the underlying genetic pathways that regulate EV productivity to inform rational host cell line engineering and media development approaches. The screens identified multiple metabolic pathways of potential interest; one of which was validated and shown to be a ready implementable, cost-effective strategy to increase EV titers. We show that both EV volumetric and specific productivity from HEK293 and CHO-S were increased in a dose and cell line-dependent manner up to ninefold when cholesterol synthesis was inhibited by the inclusion of statins in the cell culture media. In addition, we show in response to statin treatment, elevation of EV markers in mesenchymal stem cell (MSC) cell culture media suggesting this approach can also be applicable to MSC EVs. Furthermore, we show that the EVs produced from statin-treated HEK293 cultures are effectively loaded by both endogenous and exogenous loading methods and have equivalent in vitro or in vivo potency relative to EVs from untreated cultures.


Asunto(s)
Vesículas Extracelulares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Células HEK293 , Vesículas Extracelulares/metabolismo , Técnicas de Cultivo de Célula , Colesterol/metabolismo
2.
Mol Ther ; 29(5): 1729-1743, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33484965

RESUMEN

Extracellular vesicles (EVs) are an important intercellular communication system facilitating the transfer of macromolecules between cells. Delivery of exogenous cargo tethered to the EV surface or packaged inside the lumen are key strategies for generating therapeutic EVs. We identified two "scaffold" proteins, PTGFRN and BASP1, that are preferentially sorted into EVs and enable high-density surface display and luminal loading of a wide range of molecules, including cytokines, antibody fragments, RNA binding proteins, vaccine antigens, Cas9, and members of the TNF superfamily. Molecules were loaded into EVs at high density and exhibited potent in vitro activity when fused to full-length or truncated forms of PTGFRN or BASP1. Furthermore, these engineered EVs retained pharmacodynamic activity in a variety of animal models. This engineering platform provides a simple approach to functionalize EVs with topologically diverse macromolecules and represents a significant advance toward unlocking the therapeutic potential of EVs.


Asunto(s)
Vesículas Extracelulares/trasplante , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas/administración & dosificación , Proteínas Represoras/metabolismo , Animales , Comunicación Celular , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Femenino , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas de Neoplasias/genética , Proteínas del Tejido Nervioso/genética , Proteínas Represoras/genética
3.
Crit Rev Biotechnol ; 36(6): 1110-1122, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26383226

RESUMEN

Biotherapeutic proteins represent a mainstay of treatment for a multitude of conditions, for example, autoimmune disorders, hematologic disorders, hormonal dysregulation, cancers, infectious diseases and genetic disorders. The technologies behind their production have changed substantially since biotherapeutic proteins were first approved in the 1980s. Although most biotherapeutic proteins developed to date have been produced using the mammalian Chinese hamster ovary and murine myeloma (NS0, Sp2/0) cell lines, there has been a recent shift toward the use of human cell lines. One of the most important advantages of using human cell lines for protein production is the greater likelihood that the resulting recombinant protein will bear post-translational modifications (PTMs) that are consistent with those seen on endogenous human proteins. Although other mammalian cell lines can produce PTMs similar to human cells, they also produce non-human PTMs, such as galactose-α1,3-galactose and N-glycolylneuraminic acid, which are potentially immunogenic. In addition, human cell lines are grown easily in a serum-free suspension culture, reproduce rapidly and have efficient protein production. A possible disadvantage of using human cell lines is the potential for human-specific viral contamination, although this risk can be mitigated with multiple viral inactivation or clearance steps. In addition, while human cell lines are currently widely used for biopharmaceutical research, vaccine production and production of some licensed protein therapeutics, there is a relative paucity of clinical experience with human cell lines because they have only recently begun to be used for the manufacture of proteins (compared with other types of cell lines). With additional research investment, human cell lines may be further optimized for routine commercial production of a broader range of biotherapeutic proteins.


Asunto(s)
Productos Biológicos/metabolismo , Línea Celular/metabolismo , Animales , Humanos , Ingeniería Metabólica , Proteínas/metabolismo
4.
Biologicals ; 44(2): 117-22, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26852257

RESUMEN

Recently, several health authorities have requested substantial detail from sponsor firms regarding the practices employed to generate the production cell line for recombinant DNA-(rDNA) derived biopharmaceuticals. Two possible inferences from these regulatory agency questions are that (1) assurance of "clonality" of the production cell line is of major importance to assessing the safety and efficacy of the product and (2), without adequate proof of "clonality", additional studies of the cell line and product are often required to further ensure the product's purity and homogeneity. Here we address the topic of "clonality" in the broader context of product quality assurance by current technologies and practices, as well as discuss some of the relevant science and historical perspective. We agree that the clonal derivation of a production cell line is one factor with potential impact, but it is only one of many factors. Further, we believe that regulatory emphasis should be primarily placed on ensuring product quality of the material actually administered to patients, and on ensuring process consistency and implementing appropriate control strategies through the life cycle of the products.


Asunto(s)
Biofarmacia/normas , Técnicas de Cultivo de Célula/normas , Línea Celular , Tecnología Farmacéutica/normas , Animales , Humanos
5.
Biotechnol Bioeng ; 112(12): 2527-42, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26126657

RESUMEN

Based on an optimized electroporation protocol, we designed a rapid, milliliter-scale diagnostic transient production assay to identify limitations in the ability of Chinese hamster ovary (CHO) cells to produce a model "difficult-to-express" homodimeric Fc-fusion protein, Sp35Fc, that exhibited very low volumetric titer and intracellular formation of disulfide-bonded oligomeric aggregates post-transfection. As expression of Sp35Fc induced an unfolded protein response in transfected host cells, we utilized the transient assay to compare, in parallel, multiple functionally diverse strategies to engineer intracellular processing of Sp35Fc in order to increase production and reduce aggregation as two discrete design objectives. Specifically, we compared the effect of (i) co-expression of ER-resident molecular chaperones (BiP, PDI, CypB) or active forms of UPR transactivators (ATF6c, XBP1s) at varying recombinant gene load, (ii) addition of small molecules known to act as chemical chaperones (PBA, DMSO, glycerol, betaine, TMAO) or modulate UPR signaling (PERK inhibitor GSK2606414) at varying concentration, (iii) a reduction in culture temperature to 32°C. Using this information, we designed a biphasic, Sp35Fc-specific transient manufacturing process mediated by lipofection that utilized CypB co-expression at an optimal Sp35Fc:CypB gene ratio of 5:1 to initially maximize transfected cell proliferation, followed by addition of a combination of PBA (0.5 mM) and glycerol (1% v/v) at the onset of stationary phase to maximize cell specific production and eliminate Sp35Fc aggregation. Using this optimal, engineered process transient Sp35Fc production was significantly increased sixfold over a 12 day production process with no evidence of disulfide-bonded aggregates. Finally, transient production in clonally derived sub-populations (derived from parental CHO host) screened for a heritably improved capability to produce Sp35Fc was also significantly improved by the optimized process, showing that protein-specific cell/process engineering can provide a solution that exceeds the limits of genetic/functional diversity within heterogeneous host cell populations. .


Asunto(s)
Expresión Génica , Fragmentos Fc de Inmunoglobulinas/metabolismo , Ingeniería Metabólica/métodos , Proteínas Recombinantes de Fusión/metabolismo , Animales , Células CHO , Cricetulus , Fragmentos Fc de Inmunoglobulinas/genética , Chaperonas Moleculares/metabolismo , Agregado de Proteínas , Proteínas Recombinantes de Fusión/genética , Temperatura
6.
Curr Opin Biotechnol ; 77: 102776, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36041354

RESUMEN

Extracellular vesicles (EVs) have evolved across all phyla as an intercellular communication system. There are intrinsic advantages of leveraging this capability to deliver therapeutic cargo to treat disease, which have been demonstrated in numerous in vivo studies. As with other new modalities, the challenge has now shifted from proof of concept to developing reliable and efficient large-scale infrastructure to manufacture consistently pure and potent drug for broad-based patient access. This review focuses on how this challenge has been met with both existing and emerging technology platforms that are making impressive strides in the industrialization of EV manufacturing. In addition, we also highlight the gaps and opportunities that are beginning to be explored and addressed to hasten ushering in the era of therapeutic EVs.


Asunto(s)
Vesículas Extracelulares , Comunicación Celular , Sistemas de Liberación de Medicamentos , Humanos
7.
Biotechnol Bioeng ; 108(11): 2611-22, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21618473

RESUMEN

Here we describe a method that couples flow cytometric detection with the attenuated translation of a reporter protein to enable efficient selection of CHO clones producing high levels of recombinant proteins. In this system, a small cell surface reporter protein is expressed from an upstream open reading frame utilizing a non-AUG initiation (alternate start) codon. Due to the low translation initiation efficiency of this alternate start codon, the majority of translation initiation events occur at the first AUG of the downstream open reading frame encoding the recombinant protein of interest. While translation of the reporter is significantly reduced, the levels are sufficient for detection using flow cytometric methods and, in turn, predictive of protein expression from the gene of interest since both ORFs are translated from the same mRNA. Using this system, CHO cells have been sorted to obtain enriched pools producing significantly higher levels of recombinant proteins than the starting cell population and clones with significantly better productivity than those generated from limiting dilution cloning. This method also serves as an effective screening tool during clone expansion to enable resources to be focused solely on clones with both high and stable expression.


Asunto(s)
Codón Iniciador/genética , Proteínas Recombinantes/biosíntesis , Animales , Células CHO , Técnicas de Cultivo de Célula , Cricetinae , Cricetulus , Citometría de Flujo , Perfilación de la Expresión Génica/métodos , Genes Reporteros , Tamizaje Masivo/métodos , Proteínas Recombinantes/genética
8.
Mol Cancer Ther ; 20(3): 523-534, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33443094

RESUMEN

The promise of IL12 as a cancer treatment has yet to be fulfilled with multiple tested approaches being limited by unwanted systemic exposure and unpredictable pharmacology. To address these limitations, we generated exoIL12, a novel, engineered exosome therapeutic that displays functional IL12 on the surface of an exosome. IL12 exosomal surface expression was achieved via fusion to the abundant exosomal surface protein PTGFRN resulting in equivalent potency in vitro to recombinant IL12 (rIL12) as demonstrated by IFNγ production. Following intratumoral injection, exoIL12 exhibited prolonged tumor retention and greater antitumor activity than rIL12. Moreover, exoIL12 was significantly more potent than rIL12 in tumor growth inhibition. In the MC38 model, complete responses were observed in 63% of mice treated with exoIL12; in contrast, rIL12 resulted in 0% complete responses at an equivalent IL12 dose. This correlated with dose-dependent increases in tumor antigen-specific CD8+ T cells. Rechallenge studies of exoIL12 complete responder mice showed no tumor regrowth, and depletion of CD8+ T cells completely abrogated antitumor activity of exoIL12. Following intratumoral administration, exoIL12 exhibited 10-fold higher intratumoral exposure than rIL12 and prolonged IFNγ production up to 48 hours. Retained local pharmacology of exoIL12 was further confirmed using subcutaneous injections in nonhuman primates. This work demonstrates that tumor-restricted pharmacology of exoIL12 results in superior in vivo efficacy and immune memory without systemic IL12 exposure and related toxicity. ExoIL12 is a novel cancer therapeutic candidate that overcomes key limitations of rIL12 and thereby creates a therapeutic window for this potent cytokine.


Asunto(s)
Exosomas/metabolismo , Interleucina-12/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Macaca fascicularis , Ratones
9.
Commun Biol ; 4(1): 497, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888863

RESUMEN

Cyclic dinucleotide (CDN) agonists of the STimulator of InterferoN Genes (STING) pathway have shown immune activation and tumor clearance in pre-clinical models. However, CDNs administered intratumorally also promote STING activation leading to direct cytotoxicity of many cell types in the tumor microenvironment (TME), systemic inflammation due to rapid tumor extravasation of the CDN, and immune ablation in the TME. These result in a failure to establish immunological memory. ExoSTING, an engineered extracellular vesicle (EV) exogenously loaded with CDN, enhances the potency of CDN and preferentially activates antigen presenting cells in the TME. Following intratumoral injection, exoSTING was retained within the tumor, enhanced local Th1 responses and recruitment of CD8+ T cells, and generated systemic anti-tumor immunity to the tumor. ExoSTING at therapeutically active doses did not induce systemic inflammatory cytokines, resulting in an enhanced therapeutic window. ExoSTING is a novel, differentiated therapeutic candidate that leverages the natural biology of EVs to enhance the activity of CDNs.


Asunto(s)
Vesículas Extracelulares/fisiología , Vigilancia Inmunológica , Microambiente Tumoral/fisiología , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
10.
J Biotechnol ; 294: 1-13, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30703471

RESUMEN

Synthetic promoters are an attractive alternative for use in mammalian hosts such as CHO cells as they can be designed de novo with user-defined functionalities. In this study, we describe and validate a method for bioprocess-directed design of synthetic promoters utilizing CHO genomic sequence information. We designed promoters with two objective features, (i) constitutive high-level recombinant gene transcription, and (ii) upregulated transcription under mild hypothermia or late-stage culture. CHO genes varying in transcriptional activity were selected based on a comparative analysis of RNA-Seq transcript levels in normal and biphasic cultures in combination with estimates of mRNA half-life from published genome scale datasets. Discrete transcription factor regulatory elements (TFREs) upstream of these genes were informatically identified and functionally screened in vitro to identify a subset of TFREs with the potential to support high activity recombinant gene transcription during biphasic cell culture processes. Two libraries of heterotypic synthetic promoters with varying TFRE combinations were then designed in silico that exhibited a maximal 2.5-fold increase in transcriptional strength over the CMV-IE promoter after transient transfection into host CHO-K1 cells. A subset of synthetic promoters was then used to create stable transfectant pools using CHO-K1 cells under glutamine synthetase selection. Whilst not achieving the maximal 2.5-fold increase in productivity over stable pools harboring the CMV promoter, all stably transfected cells utilizing synthetic promoters exhibited increased reporter production - up to 1.6-fold that of cells employing CMV, both in the presence or absence of intron A immediately downstream of the promoter. The increased productivity of stably transfected cells harboring synthetic promoters was maintained during fed-batch culture, with or without a transition to mild hypothermia at the onset of stationary phase. Our data exemplify that it is important to consider both host cell and intended bioprocess contexts as design criteria in the de novo construction of synthetic genetic parts for mammalian cell engineering.


Asunto(s)
Cricetulus , Genoma , Regiones Promotoras Genéticas , Elementos Reguladores de la Transcripción , Animales , Células CHO
11.
Biotechnol Bioeng ; 99(3): 652-65, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17680659

RESUMEN

Glycosylation in the Fc region of antibodies has been shown to play an important role in antibody function. In the current study, glycosylation of human monoclonal antibodies was metabolically modulated using a potent alpha-mannosidase I inhibitor, kifunensine, resulting in the production of antibodies with oligomannose-type N-glycans. Growing Chinese hamster ovary cells for 11 days in batch culture with a single treatment of kifunensine was sufficient to elicit this effect without any significant impact on cell viability or antibody production. Antibodies expressed in the presence of kifunensine at a concentration as low as 60 ng/mL contained mainly oligomannose-type glycans and demonstrated increased ADCC activity and affinity for FcgammaRIIIA, but reduced C1q binding. Although the kifunensine-mediated shift to oligomannose-type glycans could, in theory, result in rapid clearance of the antibody through increased mannose receptor binding, the serum levels of antibody in mice were not significantly altered up to 168 h following injection. The use of kifunensine provides a simple and rapid method for the production of antibodies with increased ADCC without the time-consuming need to re-engineer either the antibody molecule or the host cell line.


Asunto(s)
Alcaloides/administración & dosificación , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Manosa/química , Manosa/inmunología , Ingeniería de Proteínas/métodos , Animales , Células CHO , Cricetinae , Cricetulus , Fucosa/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ratones
12.
Biotechnol Prog ; 23(2): 465-72, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17261021

RESUMEN

Flow cytometry was partnered with a nonfluorescent reporter protein for rapid, early stage identification of clones producing high levels of a therapeutic protein. A cell surface protein, not normally expressed on CHO cells, is coexpressed, as a reporter, with the therapeutic protein and detected using a fluorescently labeled antibody. The genes encoding the reporter protein and the therapeutic protein are linked by an IRES, so that they are transcribed in the same mRNA but are translated independently. Since they each arise from a common mRNA, the reporter protein's expression level accurately predicts the relative expression level of the therapeutic protein for each clone. This method provides an effective process for generating recombinant cell lines producing high levels of therapeutic proteins, with the benefits of rapid and accurate 96-well plate clone screening and elimination of unstable clones at an earlier stage in the development process. Furthermore, because this method does not rely on the availability of an antibody specific for the therapeutic protein being expressed, it can be easily implemented into any cell line development process.


Asunto(s)
Antígenos CD20/análisis , Células CHO/citología , Células CHO/inmunología , Separación Celular/métodos , Clonación Molecular/métodos , Citometría de Flujo/métodos , Recombinación Genética/fisiología , Animales , Células CHO/clasificación , Cricetinae , Cricetulus
13.
Biotechnol Prog ; 33(6): 1468-1475, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28842948

RESUMEN

The Biogen upstream platform is capable of delivering equivalent quality material throughout the cell line generation process. This allows us to rapidly deliver high-quality biopharmaceuticals to patients with unmet medical needs. The drive to reduce time-to-market led the cell engineering group to develop an expression system that can enable this strategy. We have developed a clonal Chinese Hamster Ovary (CHO) host cell line that can routinely produce consistent antibody material at high titers throughout the cell line generation process. This host line enables faster delivery of early phase material through use of the highly productive stable pool or a mixture of high performance clones. Due to unique characteristics of this cell line, the product quality of material from early cell populations is very comparable to material from the final clones. This lends itself to a "fast-to-tox" strategy whereby toxicology studies can be performed with representative material from an earlier cell population, thus accelerating the clinical timelines. Our new clonal host offers robust and consistent performance that enables a highly productive, flexible process and faster preclinical timelines. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1468-1475, 2017.


Asunto(s)
Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/uso terapéutico , Células CHO/efectos de los fármacos , Células Clonales/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Células CHO/inmunología , Cricetinae , Cricetulus , Humanos
14.
Biotechnol Prog ; 32(3): 813-7, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27004436

RESUMEN

A central goal for most biopharmaceutical companies is to reduce the development timeline to reach clinical proof of concept. This objective requires the development of tools that ensure the quality of biotherapeutic material destined for the clinic. Recent advances in high throughput protein analytics provide confidence in our ability to assess productivity and product quality attributes at early stages of cell line development. However, one quality attribute has, until recently, been absent from the standard battery of analytical tests facilitating informed choices early in cell line selection: genetic sequence confirmation. Techniques historically used for mutation analysis, such as detailed mass spectrometry, have limitations on the sample number and turnaround times making it less attractive at early stages. Thus, we explored the utility of Next-Generation Sequencing (NGS) as a solution to address these limitations. Amplicon sequencing is one such NGS technique that is robust, rapid, sensitive, and amenable to multiplexing, all of which are essential attributes for our purposes. Here we report a NGS method based upon amplicon sequencing that has been successfully incorporated into our cell line development workflow alongside other high-throughput protein analytical assays. The NGS method has demonstrated its value by identifying at least one Chinese hamster ovary (CHO) clone expressing a variant form of the biotherapeutic in each of the four clinical programs in which it has been utilized. We believe this sequence confirmation method is essential to safely accelerating the time to clinical proof of concept of biotherapeutics, and guard against delays related to sequence mutations. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:813-817, 2016.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Análisis de Secuencia de ADN , Animales , Células CHO , Células Cultivadas , Biología Computacional , Cricetulus , Espectrometría de Masas
15.
Biotechnol Prog ; 32(1): 235-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26588060

RESUMEN

The serum half-life, biological activity, and solubility of many recombinant glycoproteins depend on their sialylation. Monitoring glycoprotein sialylation during cell culture manufacturing is, therefore, critical to ensure product efficacy and safety. Here a high-throughput method for semi-quantitative fingerprinting of glycoprotein sialylation using capillary isoelectric focusing immunoassay on NanoPro (Protein Simple) platform was developed. The method was specific, sensitive, precise, and robust. It could analyze 2 µL of crude cell culture samples without protein purification, and could automatically analyze from 8 samples in 4 h to 96 samples in 14 h without analyst supervision. Furthermore, its capability to detect various changes in sialylation fingerprints during cell culture manufacturing process was indispensable to ensure process robustness and consistency. Moreover, the changes in the sialylation fingerprints analyzed by this method showed strong correlations with intact mass analysis using liquid chromatography and mass spectrometry.


Asunto(s)
Glicoproteínas/aislamiento & purificación , Focalización Isoeléctrica/métodos , Ácido N-Acetilneuramínico/química , Mapeo Peptídico/métodos , Técnicas de Cultivo de Célula , Cromatografía Liquida , Glicoproteínas/química , Glicosilación , Humanos , Inmunoensayo/métodos , Espectrometría de Masas
16.
Biotechnol Prog ; 31(5): 1201-11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25919541

RESUMEN

This case study addresses the difficulty in achieving high level expression and production of a small, very positively charged recombinant protein. The novel challenges with this protein include the protein's adherence to the cell surface and its inhibitory effects on Chinese hamster ovary (CHO) cell growth. To overcome these challenges, we utilized a multi-prong approach. We identified dextran sulfate as a way to simultaneously extract the protein from the cell surface and boost cellular productivity. In addition, host cells were adapted to grow in the presence of this protein to improve growth and production characteristics. To achieve an increase in productivity, new cell lines from three different CHO host lines were created and evaluated in parallel with new process development workflows. Instead of a traditional screen of only four to six cell lines in bioreactors, over 130 cell lines were screened by utilization of 15 mL automated bioreactors (AMBR) in an optimal production process specifically developed for this protein. Using the automation, far less manual intervention is required than in traditional bench-top bioreactors, and much more control is achieved than typical plate or shake flask based screens. By utilizing an integrated cell line and process development incorporating medium optimized for this protein, we were able to increase titer more than 10-fold while obtaining desirable product quality. Finally, Monte Carlo simulations were performed to predict the optimal number of cell lines to screen in future cell line development work with the goal of systematically increasing titer through enhanced cell line screening.


Asunto(s)
Técnicas de Cultivo de Célula , Regulación de la Expresión Génica , Proteínas Recombinantes/biosíntesis , Animales , Automatización , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Células CHO , Simulación por Computador , Cricetinae , Cricetulus , Método de Montecarlo
17.
J Bone Miner Res ; 17(6): 1102-10, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12054166

RESUMEN

Oncogenic osteomalacia (OOM) is associated with primitive mesenchymal tumors that secrete phosphaturic factors resulting in low serum concentrations of phosphate and calcitriol, phosphaturia, and defective bone mineralization. To identify overexpressed genes in these tumors, we compared gene expression profiles of tumors resected from patients with OOM and histologically similar control tumors using serial analysis of gene expression (SAGE). Three hundred and sixty-four genes were expressed at least twofold greater in OOM tumors compared with control tumors. A subset of 67 highly expressed genes underwent validation with an extended set of OOM and control tumors using array analysis or reverse-transcription polymerase chain reaction (RT-PCR). Ten of these validated genes were consistently overexpressed in all OOM tumors relative to control tumors. Strikingly, genes with roles in bone matrix formation, mineral ion transport, and bone mineralization were highly expressed in the OOM tumors.


Asunto(s)
Neoplasias Óseas/genética , Huesos/metabolismo , Perfilación de la Expresión Génica , Osteomalacia/genética , Secuencia de Bases , Neoplasias Óseas/metabolismo , Calcitriol/metabolismo , Calcio/metabolismo , Cartilla de ADN , Humanos , Osteomalacia/metabolismo , Hormona Paratiroidea/metabolismo , Fósforo/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
Adv Biochem Eng Biotechnol ; 139: 11-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24196317

RESUMEN

Mammalian cell expression systems are the dominant tool today for producing complex biotherapeutic proteins. In this chapter, we discuss the basis for this dominance, and further explore why the Chinese hamster ovary (CHO) cell line has become the prevalent choice of hosts to produce most recombinant biologics. Furthermore, we explore some of the innovations that are currently in development to improve the CHO cell platform, from cell line specific technologies to overarching technologies that are designed to improve the overall workflow of bioprocess development.


Asunto(s)
Células CHO/fisiología , Técnicas de Cultivo de Célula/métodos , Diseño de Fármacos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/uso terapéutico , Robótica/métodos , Animales , Células CHO/clasificación , Cricetinae , Cricetulus , Humanos
19.
Biotechnol Prog ; 30(2): 516-20, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24449619

RESUMEN

Product quality analyses are critical for developing cell line and bioprocess producing therapeutic proteins with desired critical product quality attributes. To facilitate these analyses, a high-throughput small-scale protein purification (SSP) is required to quickly purify many samples in parallel. Here we develop an SSP using ion exchange resins to purify a positively charged recombinant growth factor P1 in the presence of negatively charged dextran sulfate supplemented to improve the cell culture performance. The major challenge in this work is that the strong ionic interaction between P1 and dextran sulfate disrupts interaction between P1 and chromatography resins. To solve this problem, we develop a two-step SSP using Q Sepharose Fast Flow (QFF) and SP Sepharose XL (SPXL) resins to purify P1. The overall yield of this two-step SSP is 78%. Moreover, the SSP does not affect the critical product quality attributes. The SSP was critical for developing the cell line and process producing P1.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Sulfato de Dextran/química , Proteínas Recombinantes/aislamiento & purificación , Biotecnología/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Recombinantes/química
20.
J Biol Chem ; 278(35): 32744-52, 2003 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-12801930

RESUMEN

One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.


Asunto(s)
Cisteína/química , Activación Enzimática , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Células CHO , Carboxipeptidasas/química , Catepsina A , Cobre/química , Cricetinae , Dimerización , Relación Dosis-Respuesta a Droga , Eliminación de Gen , Humanos , Cinética , Espectrometría de Masas , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Mutación , Mapeo Peptídico , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Compuestos de Sulfhidrilo/química , Temperatura , Factores de Tiempo , Transfección , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA