Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Genet ; 5(11): e1000732, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19936065

RESUMEN

Recent comprehensive sequence analysis of the maize genome now permits detailed discovery and description of all transposable elements (TEs) in this complex nuclear environment. Reiteratively optimized structural and homology criteria were used in the computer-assisted search for retroelements, TEs that transpose by reverse transcription of an RNA intermediate, with the final results verified by manual inspection. Retroelements were found to occupy the majority (>75%) of the nuclear genome in maize inbred B73. Unprecedented genetic diversity was discovered in the long terminal repeat (LTR) retrotransposon class of retroelements, with >400 families (>350 newly discovered) contributing >31,000 intact elements. The two other classes of retroelements, SINEs (four families) and LINEs (at least 30 families), were observed to contribute 1,991 and approximately 35,000 copies, respectively, or a combined approximately 1% of the B73 nuclear genome. With regard to fully intact elements, median copy numbers for all retroelement families in maize was 2 because >250 LTR retrotransposon families contained only one or two intact members that could be detected in the B73 draft sequence. The majority, perhaps all, of the investigated retroelement families exhibited non-random dispersal across the maize genome, with LINEs, SINEs, and many low-copy-number LTR retrotransposons exhibiting a bias for accumulation in gene-rich regions. In contrast, most (but not all) medium- and high-copy-number LTR retrotransposons were found to preferentially accumulate in gene-poor regions like pericentromeric heterochromatin, while a few high-copy-number families exhibited the opposite bias. Regions of the genome with the highest LTR retrotransposon density contained the lowest LTR retrotransposon diversity. These results indicate that the maize genome provides a great number of different niches for the survival and procreation of a great variety of retroelements that have evolved to differentially occupy and exploit this genomic diversity.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma de Planta/genética , Retroelementos/genética , Zea mays/genética , Análisis de Varianza , Secuencia de Bases , Centrómero/genética , Cromosomas de las Plantas/genética , Dosificación de Gen/genética , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Elementos de Nucleótido Esparcido Corto/genética , Secuencias Repetidas Terminales/genética
2.
Nat Commun ; 13(1): 3750, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768438

RESUMEN

Multiple myeloma is the second most common hematological malignancy. Despite significant advances in treatment, relapse is common and carries a poor prognosis. Thus, it is critical to elucidate the genetic factors contributing to disease progression and drug resistance. Here, we carry out integrative clinical sequencing of 511 relapsed, refractory multiple myeloma (RRMM) patients to define the disease's molecular alterations landscape. The NF-κB and RAS/MAPK pathways are more commonly altered than previously reported, with a prevalence of 45-65% each. In the RAS/MAPK pathway, there is a long tail of variants associated with the RASopathies. By comparing our RRMM cases with untreated patients, we identify a diverse set of alterations conferring resistance to three main classes of targeted therapy in 22% of our cohort. Activating mutations in IL6ST are also enriched in RRMM. Taken together, our study serves as a resource for future investigations of RRMM biology and potentially informs clinical management.


Asunto(s)
Mieloma Múltiple , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Medicamentos , Resistencia a Antineoplásicos/genética , Heterogeneidad Genética , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología
3.
BMC Genomics ; 11: 395, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20569427

RESUMEN

BACKGROUND: Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. RESULTS: A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF). A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT) and Vitis vinifera (VV) whole genome sequences. CONCLUSION: Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence.


Asunto(s)
Genoma de Planta/genética , Gossypium/genética , Mapeo Físico de Cromosoma/métodos , Arabidopsis/genética , Cloroplastos/genética , Cromosomas Artificiales Bacterianos/genética , Secuencia de Consenso , Mapeo Contig , Dermatoglifia del ADN , Evolución Molecular , Duplicación de Gen , Genes de Plantas/genética , Sitios Genéticos/genética , Marcadores Genéticos/genética , Gossypium/citología , Hibridación de Ácido Nucleico , Biosíntesis de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos , Vitis/genética
4.
Trends Genet ; 22(11): 597-602, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16979781

RESUMEN

Genome duplication is potentially a good source of new genes, but such genes take time to evolve. We have found a group of "duplication-resistant" genes, which have undergone convergent restoration to singleton status following several independent genome duplications. Restoration of duplication-resistant genes to singleton status could be important to long-term survival of a polyploid lineage. Angiosperms show more frequent polyploidization and a higher degree of duplicate gene preservation than other paleopolyploids, making them well-suited to further study of duplication-resistant genes.


Asunto(s)
Arabidopsis/genética , Duplicación de Gen , Oryza/genética , Saccharomyces/genética , Tetraodontiformes/genética , Animales , Evolución Molecular , Genes de Plantas , Genoma Fúngico , Poliploidía , Estructura Terciaria de Proteína
5.
Curr Opin Genet Dev ; 13(6): 644-50, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14638328

RESUMEN

The cereal species, of central importance to our diet, began to diverge 50-70 million years ago. For the past few thousand years, these species have undergone largely parallel selection regimes associated with domestication and improvement. The rice genome sequence provides a platform for organizing information about diverse cereals, and together with genetic maps and sequence samples from other cereals is yielding new insights into both the shared and the independent dimensions of cereal evolution. New data and population-based approaches are identifying genes that have been involved in cereal improvement. Reduced-representation sequencing promises to accelerate gene discovery in many large-genome cereals, and to better link the under-explored genomes of 'orphan' cereals with state-of-the-art knowledge.


Asunto(s)
Grano Comestible/genética , Evolución Molecular , Genoma , Modelos Genéticos , Selección Genética , Agricultura , Arqueología , Cruzamiento , Variación Genética , Genética de Población , Oryza/genética
6.
Genome Biol ; 12(5): R48, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21619600

RESUMEN

BACKGROUND: Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome. RESULTS: Analysis of Amborella BAC ends sequenced from each contig suggests that the density of long terminal repeat retrotransposons is negatively correlated with that of protein coding genes. Syntenic, presumably ancestral, gene blocks were identified in comparisons of the Amborella BAC contigs and the sequenced Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa genomes. Parsimony mapping of the loss of synteny corroborates previous analyses suggesting that the rate of structural change has been more rapid on lineages leading to Arabidopsis and Oryza compared with lineages leading to Populus and Vitis. The gamma paleohexiploidy event identified in the Arabidopsis, Populus and Vitis genomes is shown to have occurred after the divergence of all other known angiosperms from the lineage leading to Amborella. CONCLUSIONS: When placed in the context of a physical map, BAC end sequences representing just 5.4% of the Amborella genome have facilitated reconstruction of gene blocks that existed in the last common ancestor of all flowering plants. The Amborella genome is an invaluable reference for inferences concerning the ancestral angiosperm and subsequent genome evolution.


Asunto(s)
Mapeo Contig/métodos , Evolución Molecular , Genoma de Planta , Genómica/métodos , Magnoliopsida/genética , Bases de Datos Genéticas , Magnoliopsida/clasificación , Nueva Caledonia , Sistemas de Lectura Abierta/genética , Filogenia , Filogeografía , Ploidias , Retroelementos , Análisis de Secuencia de ADN , Sintenía
7.
Plant Methods ; 5: 8, 2009 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-19545381

RESUMEN

BACKGROUND: High quality annotation of the genes and transposable elements in complex genomes requires a human-curated integration of multiple sources of computational evidence. These evidences include results from a diversity of ab initio prediction programs as well as homology-based searches. Most of these programs operate on a single contiguous sequence at a time, and the results are generated in a diverse array of readable formats that must be translated to a standardized file format. These translated results must then be concatenated into a single source, and then presented in an integrated form for human curation. RESULTS: We have designed, implemented, and assessed a Perl-based workflow named DAWGPAWS for the generation of computational results for human curation of the genes and transposable elements in plant genomes. The use of DAWGPAWS was found to accelerate annotation of 80-200 kb wheat DNA inserts in bacterial artificial chromosome (BAC) vectors by approximately twenty-fold and to also significantly improve the quality of the annotation in terms of completeness and accuracy. CONCLUSION: The DAWGPAWS genome annotation pipeline fills an important need in the annotation of plant genomes by generating computational evidences in a high throughput manner, translating these results to a common file format, and facilitating the human curation of these computational results. We have verified the value of DAWGPAWS by using this pipeline to annotate the genes and transposable elements in 220 BAC insertions from the hexaploid wheat genome (Triticum aestivum L.). DAWGPAWS can be applied to annotation efforts in other plant genomes with minor modifications of program-specific configuration files, and the modular design of the workflow facilitates integration into existing pipelines.

8.
Genome Res ; 19(2): 243-54, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19029538

RESUMEN

Although the proliferation of LTR retrotransposons can cause major genomic modification and reorganization, the evolutionary dynamics that affect their frequency in host genomes are poorly understood. We analyzed patterns of genetic variation among LTR retrotransposons from Oryza sativa to investigate the type of selective forces that potentially limit their amplification and subsequent population of a nuclear genome. We performed both intra- and interfamily analyses of patterns of molecular sequence variation across multiple LTR retrotransposon genes. This analysis involved more than 1000 LTR retrotransposon sequences from 14 separate families that varied in both their insertion dates and full-length copy numbers. We uncovered evidence of strong purifying selection across all gene regions, but also indications that rare episodes of positive selection and adaptation to the host genome occur. Furthermore, our results indicate that LTR retrotransposons exhibit different but predictable patterns of sequence variation depending on their date of transposition, suggesting that LTR retrotransposons, regardless of superfamily and family classifications, show similar "life-histories."


Asunto(s)
Evolución Molecular , Genes de Plantas/fisiología , Oryza/genética , Retroelementos/genética , Selección Genética , Codón sin Sentido/genética , Variación Genética/fisiología , Genoma de Planta , Familia de Multigenes , Filogenia , Secuencias Repetidas Terminales/genética
9.
Mol Genet Genomics ; 274(3): 248-63, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16179993

RESUMEN

The scarcity of genetic polymorphism in Arachis hypogaea (peanut), as in other monophyletic polyploid species, makes it especially vulnerable to nematode, bacterial, fungal, and viral pathogens. Although no disease resistance genes have been cloned from peanut itself, the conserved motifs in cloned resistance genes from other plant species provide a means to isolate and analyze similar genes from peanut. To survey the number, diversity, evolutionary history, and genomic organization of resistance gene-like sequences in peanut, we isolated 234 resistance gene analogs (RGAs) by using primers designed from conserved regions of different classes of resistance genes including NBS-LRR, and LRR-TM classes. Phylogenetic and sequence analyses were performed to explore evolutionary relationships both among peanut RGAs and with orthologous genes from other plant taxa. Fifty-six overgos designed from the RGA sequences on the basis of their phyletic association were applied to a peanut BAC library; 736 hybridizing BAC clones were fingerprinted and contigs were formed in order to gain insights into the genomic organization of these genes. All the fingerprinting gels were blotted and screened with the respective overgos in order to verify the authenticity of the hits from initial screens, and to explore the physical organization of these genes in terms of both copy number and distribution in the genome. As a result, we identified 250 putative resistance gene loci. A correlation was found between the phyletic positions of the sequences and their physical locations. The BACs isolated here will serve as a valuable resource for future applications, such as map-based cloning, and will help improve our understanding of the evolution and organization of these genes in the peanut genome.


Asunto(s)
Arachis/genética , Evolución Molecular , Genes de Plantas/genética , Inmunidad Innata/genética , Filogenia , Enfermedades de las Plantas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Artificiales Bacterianos , Análisis por Conglomerados , Dermatoglifia del ADN , Cartilla de ADN , Componentes del Gen , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología , Análisis de Secuencia de ADN
10.
Genome Res ; 15(9): 1198-210, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16109973

RESUMEN

Both ancient and recent polyploidy, together with post-polyploidization loss of many duplicated gene copies, complicates angiosperm comparative genomics. To explore an approach by which these challenges might be mitigated, genetic maps of extant diploid and tetraploid cottons (Gossypium spp.) were used to infer the approximate order of 3016 loci along the chromosomes of their hypothetical common ancestor. The inferred Gossypium gene order corresponded more closely than the original maps did to a similarly inferred ancestral gene order predating an independent paleopolyploidization (alpha) in Arabidopsis. At least 59% of the cotton map and 53% of the Arabidopsis transcriptome showed correspondence in multilocus gene arrangements based on one or both of two software packages (CrimeStatII, FISH). Genomic regions in which chromosome structural rearrangement has been rapid (obscuring gene order correspondence) have also been subject to greater divergence of individual gene sequences. About 26%-44% of corresponding regions involved multiple Arabidopsis or cotton chromosomes, in some cases consistent with known, more ancient, duplications. The genomic distributions of multiple-locus probes provided early insight into the consequences for chromosome structure of an ancient large-scale duplication in cotton. Inferences that mitigate the consequences of ancient duplications improve leveraging of genomic information for model organisms in the study of more complex genomes.


Asunto(s)
Arabidopsis/genética , Gossypium/genética , Poliploidía , Evolución Biológica , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Duplicación de Gen , Genes de Plantas , Genoma de Planta , Genómica , Especificidad de la Especie
11.
Proc Natl Acad Sci U S A ; 102(37): 13206-11, 2005 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-16141333

RESUMEN

Nearly finished sequences for model organisms provide a foundation from which to explore genomic diversity among other taxonomic groups. We explore genome-wide microsynteny patterns between the rice sequence and two sorghum physical maps that integrate genetic markers, bacterial artificial chromosome (BAC) fingerprints, and BAC hybridization data. The sorghum maps largely tile a genomic component containing 41% of BACs but 80% of single-copy genes that shows conserved microsynteny with rice and partially tile a nonsyntenic component containing 46% of BACs but only 13% of single-copy genes. The remaining BACs are centromeric (4%) or unassigned (8%). The two genomic components correspond to cytologically discernible "euchromatin" and "heterochromatin." Gene and repetitive DNA distributions support this classification. Greater microcolinearity in recombinogenic (euchromatic) than nonrecombinogenic (heterochromatic) regions is consistent with the hypothesis that genomic rearrangements are usually deleterious, thus more likely to persist in nonrecombinogenic regions by virtue of Muller's ratchet. Interchromosomal centromeric rearrangements may have fostered diploidization of a polyploid cereal progenitor. Model plant sequences better guide studies of related genomes in recombinogenic than nonrecombinogenic regions. Bridging of 35 physical gaps in the rice sequence by sorghum BAC contigs illustrates reciprocal benefits of comparative approaches that extend at least across the cereals and perhaps beyond.


Asunto(s)
Estructuras Cromosómicas , Mapeo Físico de Cromosoma/métodos , Poaceae/genética , Recombinación Genética , Sintenía , Secuencia de Bases , Eucromatina , Genoma de Planta , Heterocromatina , Datos de Secuencia Molecular , Oryza/genética , Sorghum/genética
12.
Genome Res ; 14(9): 1812-9, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15342564

RESUMEN

Dense coverage of the rice genome with polymorphic DNA markers is an invaluable tool for DNA marker-assisted breeding, positional cloning, and a wide range of evolutionary studies. We have aligned drafts of two rice subspecies, indica and japonica, and analyzed levels and patterns of genetic diversity. After filtering multiple copy and low quality sequence, 408,898 candidate DNA polymorphisms (SNPs/INDELs) were discerned between the two subspecies. These filters have the consequence that our data set includes only a subset of the available SNPs (in particular excluding large numbers of SNPs that may occur between repetitive DNA alleles) but increase the likelihood that this subset is useful: Direct sequencing suggests that 79.8% +/- 7.5% of the in silico SNPs are real. The SNP sample in our database is not randomly distributed across the genome. In fact, 566 rice genomic regions had unusually high (328 contigs/48.6 Mb/13.6% of genome) or low (237 contigs/64.7 Mb/18.1% of genome) polymorphism rates. Many SNP-poor regions were substantially longer than most SNP-rich regions, covering up to 4 Mb, and possibly reflecting introgression between the respective gene pools that may have occurred hundreds of years ago. Although 46.2% +/- 8.3% of the SNPs differentiate other pairs of japonica and indica genotypes, SNP rates in rice were not predictive of evolutionary rates for corresponding genes in another grass species, sorghum. The data set is freely available at http://www.plantgenome.uga.edu/snp.


Asunto(s)
Cruzamiento , Variación Genética , Genoma de Planta , Oryza/genética , Polimorfismo de Nucleótido Simple , Datos de Secuencia Molecular , Oryza/clasificación , Recombinación Genética , Alineación de Secuencia , Sorghum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA