Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(8): 102146, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716777

RESUMEN

Ovarian clear cell carcinoma (OCCC) is an understudied poor prognosis subtype of ovarian cancer lacking in effective targeted therapies. Efforts to define molecular drivers of OCCC malignancy may lead to new therapeutic targets and approaches. Among potential targets are secreted proteases, enzymes which in many cancers serve as key drivers of malignant progression. Here, we found that inhibitors of trypsin-like serine proteases suppressed malignant phenotypes of OCCC cell lines. To identify the proteases responsible for malignancy in OCCC, we employed activity-based protein profiling to directly analyze enzyme activity. We developed an activity-based probe featuring an arginine diphenylphosphonate warhead to detect active serine proteases of trypsin-like specificity and a biotin handle to facilitate affinity purification of labeled proteases. Using this probe, we identified active trypsin-like serine proteases within the complex proteomes secreted by OCCC cell lines, including two proteases in common, tissue plasminogen activator and urokinase-type plasminogen activator. Further interrogation of these proteases showed that both were involved in cancer cell invasion and proliferation of OCCC cells and were also detected in in vivo models of OCCC. We conclude the detection of tissue plasminogen activator and urokinase-type plasminogen activator as catalytically active proteases and significant drivers of the malignant phenotype may point to these enzymes as targets for new therapeutic strategies in OCCC. Our activity-based probe and profiling methodology will also serve as a valuable tool for detection of active trypsin-like serine proteases in models of other cancers and other diseases.


Asunto(s)
Adenocarcinoma de Células Claras , Neoplasias Ováricas , Serina Proteasas , Adenocarcinoma de Células Claras/enzimología , Adenocarcinoma de Células Claras/patología , Femenino , Humanos , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Serina Proteasas/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Tripsina , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
2.
FASEB J ; 28(9): 3952-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24891519

RESUMEN

The voltage-gated potassium (Kv) 1.3 channel is widely regarded as a therapeutic target for immunomodulation in autoimmune diseases. ShK-186, a selective inhibitor of Kv1.3 channels, ameliorates autoimmune diseases in rodent models, and human phase 1 trials of this agent in healthy volunteers have been completed. In this study, we identified and characterized a large family of Stichodactyla helianthus toxin (ShK)-related peptides in parasitic worms. Based on phylogenetic analysis, 2 worm peptides were selected for study: AcK1, a 51-residue peptide expressed in the anterior secretory glands of the dog-infecting hookworm Ancylostoma caninum and the human-infecting hookworm Ancylostoma ceylanicum, and BmK1, the C-terminal domain of a metalloprotease from the filarial worm Brugia malayi. These peptides in solution adopt helical structures closely resembling that of ShK. At doses in the nanomolar-micromolar range, they block native Kv1.3 in human T cells and cloned Kv1.3 stably expressed in L929 mouse fibroblasts. They preferentially suppress the proliferation of rat CCR7(-) effector memory T cells without affecting naive and central memory subsets and inhibit the delayed-type hypersensitivity (DTH) response caused by skin-homing effector memory T cells in rats. Further, they suppress IFNγ production by human T lymphocytes. ShK-related peptides in parasitic worms may contribute to the potential beneficial effects of probiotic parasitic worm therapy in human autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/prevención & control , Venenos de Cnidarios/química , Helmintos/metabolismo , Memoria Inmunológica/efectos de los fármacos , Canal de Potasio Kv1.3/antagonistas & inhibidores , Fragmentos de Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Linfocitos T/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Electrofisiología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/inmunología , Fibroblastos/metabolismo , Humanos , Hipersensibilidad Tardía/prevención & control , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Filogenia , Conformación Proteica , Ratas , Ratas Endogámicas Lew , Receptores CCR7/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Linfocitos T/inmunología , Linfocitos T/metabolismo
3.
Tetrahedron ; 70(21): 3422-3429, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25061237

RESUMEN

The relative cleavage of an alcohol from a panel of amino esters and amino carbonates via intramolecular cyclization was examined as a mechanism for substrate release. Thermal stability at 37 °C was observed only for the 7-membered ring progenitors. Applicability of the approach was illustrated by δ-lactam formation within a poly(dimethylsiloxane) microchannel for release of a captured fluorescent probe.

4.
Biochim Biophys Acta ; 1798(3): 303-11, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19925778

RESUMEN

The phospholipid composition of adult human lens membranes differs dramatically from that of any other mammalian membrane. Due to minimal cell turnover, cells in the nucleus of the human lens may be considered as the longest lived cells in our body. This work reassesses previous assignments of phospholipid (31)P NMR resonances in adult human lenses. The new assignments are based not only on chemical shifts but also on temperature coefficients. By addition of known phospholipids and examination by matrix-assisted laser desorption/ionization mass spectrometry, several misassigned resonances have been corrected. The revised composition reveals the possible presence of ceramide-1-phosphate and dihydroceramide-1-phosphate. Among glycerophospholipids, the most abundant one does not correspond to phosphatidylglycerol but may be due to the lysoform of alkyl-acyl analogs of phosphatidylethanolamine. Besides sphingophospholipids, adult human lens membranes contain significant amounts of ether (1-O-alkyl) glycerophospholipids and their corresponding lysoforms.


Asunto(s)
Cristalino/química , Fosfolípidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Adulto , Animales , Bovinos , Humanos , Hidrogenación , Espectroscopía de Resonancia Magnética , Membranas , Fosfolípidos/aislamiento & purificación , Isótopos de Fósforo , Temperatura
5.
Anal Chem ; 83(8): 3170-7, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21413699

RESUMEN

The phenotype and function of vascular cells in vivo are influenced by complex mechanical signals generated by pulsatile hemodynamic loading. Physiologically relevant in vitro studies of vascular cells therefore require realistic environments where in vivo mechanical loading conditions can be accurately reproduced. To accomplish a realistic in vivo-like loading environment, we designed and fabricated an Endothelial Cell Culture Model (ECCM) to generate physiological pressure, stretch, and shear stress profiles associated with normal and pathological cardiac flow states. Cells within this system were cultured on a stretchable, thin (∼500 µm) planar membrane within a rectangular flow channel and subject to constant fluid flow. Under pressure, the thin planar membrane assumed a concave shape, representing a segment of the blood vessel wall. Pulsatility was introduced using a programmable pneumatically controlled collapsible chamber. Human aortic endothelial cells (HAECs) were cultured within this system under normal conditions and compared to HAECs cultured under static and "flow only" (13 dyn/cm(2)) control conditions using microscopy. Cells cultured within the ECCM were larger than both controls and assumed an ellipsoidal shape. In contrast to static control control cells, ECCM-cultured cells exhibited alignment of cytoskeletal actin filaments and high and continuous expression levels of ß-catenin indicating an in vivo-like phenotype. In conclusion, design, fabrication, testing, and validation of the ECCM for culture of ECs under realistic pressure, flow, strain, and shear loading seen in normal and pathological conditions was accomplished. The ECCM therefore is an enabling technology that allows for study of ECs under physiologically relevant biomechanical loading conditions in vitro.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Endoteliales/citología , Modelos Biológicos , Técnicas de Cultivo de Célula/instrumentación , Células Cultivadas , Humanos , Presión , Estrés Fisiológico
6.
Biomed Microdevices ; 13(3): 453-62, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21279444

RESUMEN

Blood is a valuable tissue containing cellular populations rich in information regarding the immediate immune and inflammatory status of the body. Blood leukocytes or white blood cells (WBCs) provide an ideal sample to monitor systemic changes and understand molecular signaling mechanisms in disease processes. Blood samples need to be processed to deplete contaminating erythrocytes or red blood cells (RBCs) and sorted into different WBC sub-populations prior to analysis. This is typically accomplished using immuno-affinity protocols which result in undesirable activation. An alternative is size based sorting which by itself is unsuitable for WBCs sorting due to size overlap between different sub-populations. To overcome this limitation, we investigated the possibility of using controlled osmotic exposure to deplete and/or create a differential size increase between WBC populations. Using a new microfluidic cell docking platform, the response of RBCs and WBCs to deionized (DI) water was evaluated. Time lapse microscopy confirms depletion of RBCs within 15 s and creation of > 3 µm size difference between lymphocytes, monocytes and granulocytes. A flow through microfluidic device was also used to expose different WBCs to DI water for 30, 60 and 90 s to quantify cell loss and activation. Results confirm preservation of ~100% of monocytes, granulocytes and loss of ~30% of lymphocytes (mostly CD3+/CD4+) with minimal activation. These results indicate feasibility of this approach for monocyte, granulocyte and lymphocyte (sub-populations) isolation based on size.


Asunto(s)
Células Sanguíneas/citología , Separación Celular/instrumentación , Ósmosis , Células Sanguíneas/efectos de los fármacos , Células Sanguíneas/metabolismo , Recuento de Células , Diseño de Equipo , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Humanos , Hidrodinámica , Soluciones Hipotónicas/farmacología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Modelos Biológicos , Ósmosis/efectos de los fármacos
7.
Anal Chem ; 82(18): 7581-7, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20795703

RESUMEN

Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (µCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnicas Analíticas Microfluídicas , Miocitos Cardíacos/citología , Presión Sanguínea , Línea Celular , Corazón/fisiología , Miocitos Cardíacos/fisiología , Estrés Mecánico
8.
J Cell Physiol ; 219(3): 563-71, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19170074

RESUMEN

It is well known that bone marrow-derived mesenchymal stem cells (MSCs) are involved in wound healing and regeneration responses. In this study, we globally profiled the proteome of MSCs to investigate critical factor(s) that may promote wound healing. Cysteine-rich protein 61 (Cyr61) was found to be abundantly present in MSCs. The presence of Cyr61 was confirmed by immunofluorescence staining and immunoblot analysis. Moreover, we showed that Cyr61 is present in the culture medium (secretome) of MSCs. The secretome of MSCs stimulates angiogenic response in vitro, and neovascularization in vivo. Depletion of Cyr61 completely abrogates the angiogenic-inducing capability of the MSC secretome. Importantly, addition of recombinant Cyr61 polypeptides restores the angiogenic activity of Cyr61-depleted secretome. Collectively, these data demonstrate that Cyr61 polypeptide in MSC secretome contributes to the angiogenesis-promoting activity, a key event needed for regeneration and repair of injured tissues. J. Cell. Physiol. 219: 563-571, 2009. (c) 2009 Wiley-Liss, Inc.


Asunto(s)
Proteína 61 Rica en Cisteína/fisiología , Células Madre Mesenquimatosas/fisiología , Neovascularización Fisiológica , Animales , Células Cultivadas , Colágeno , Medios de Cultivo Condicionados , Proteína 61 Rica en Cisteína/administración & dosificación , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/farmacología , Combinación de Medicamentos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Humanos , Laminina , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Neovascularización Fisiológica/efectos de los fármacos , Proteoglicanos , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología
9.
Histochem Cell Biol ; 131(2): 239-49, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18936953

RESUMEN

Sphingosine-1-phosphate (S1P) receptor subtype 1 (S1P(1)), a G-protein coupled receptor (GPCR), regulates many biological activities of endothelial cells (ECs). In this report, we show that S1P(1) receptors are present in the nuclei of ECs by using various biochemical and microscopic techniques such as cellular fractionation, immunogold labeling, and confocal microscopic analysis. Live cell imaging showed that plasma membrane S1P(1) receptors are rapidly internalized and subsequently translocated to nuclear compartment upon S1P stimulation. Utilizing membrane biotinylation technique further supports the notion that nuclear S1P(1) receptors were internalized from plasma membrane S1P(1) after ligand treatment. Moreover, nuclear S1P(1) is able to regulate the transcription of Cyr61 and CTGF, two growth factors functionally important in the regulation of vasculature. Collectively, these data suggest a novel S1P-S1P(1) signaling axis present in the nuclear compartment of endothelial cells, which may regulate biological responses of endothelium.


Asunto(s)
Transporte Activo de Núcleo Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , Proteína 61 Rica en Cisteína/genética , Células Endoteliales/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Transcripción Genética , Membrana Celular , Endotelio Vascular , Humanos , Ligandos , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
10.
Data Brief ; 27: 104624, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31692674

RESUMEN

Exposure to ionizing radiation associated with highly energetic and charged heavy particles is an inherent risk astronauts face in long duration space missions. We have previously considered the transcriptional effects that three levels of radiation (0.3 Gy, 1.5 Gy, and 3.0 Gy) have at an immediate time point (1 hr) post-exposure [1]. Our analysis of these results suggest effects on transcript levels that could be modulated at lower radiation doses [2]. In addition, a time dependent effect is likely to be present. Therefore, in order to develop a lab-on-a-chip approach for detection of radiation exposure in terms of both radiation level and time since exposure, we developed a time- and dose-course study to determine appropriate sensitive and specific transcript biomarkers that are detectable in blood samples. The data described herein was developed from a study measuring exposure to 0.15 Gy, 0.30 Gy, and 1.5 Gy of radiation at 1 hr, 2 hr, and 6 hr post-exposure using Affymetrix® GeneChip® PrimeView™ microarrays. This report includes raw gene expression data files from the resulting microarray experiments representing typical radiation exposure levels an astronaut may experience as part of a long duration space mission. The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE63952.

11.
J Cell Biochem ; 104(5): 1793-802, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18348263

RESUMEN

Conditioned medium (secretome) derived from an enriched stem cell culture stimulates chemotaxis of human fibroblasts. These cells are classified as multipotent murine mesenchymal stromal cells (mMSC) by immunochemical analysis of marker proteins. Proteomic analysis of mMSC secretome identifies nineteen secreted proteins, including extracellular matrix structural proteins, collagen processing enzymes, pigment epithelium-derived factor (PEDF) and cystatin C. Immunodepletion and reconstitution experiments show that PEDF is the predominant fibroblast chemoattractant in the conditioned medium, and immunofluorescence microscopy shows strong staining for PEDF in the cytoplasm, at the cell surface, and in intercellular space between mMSCs. This stimulatory effect of PEDF on fibroblast chemotaxis is in contrast to the PEDF-mediated inhibition of endothelial cell migration, reported previously. These differential functional effects of PEDF toward fibroblasts and endothelial cells may serve to program an ordered temporal sequence of scaffold building followed by angiogenesis during wound healing.


Asunto(s)
Quimiotaxis , Proteínas del Ojo/metabolismo , Fibroblastos/citología , Células Madre Mesenquimatosas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Serpinas/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Línea Celular , Medios de Cultivo Condicionados , Proteínas del Ojo/química , Humanos , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Factores de Crecimiento Nervioso/química , Proteómica , Reproducibilidad de los Resultados , Serpinas/química
12.
Anal Biochem ; 380(1): 41-50, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18534182

RESUMEN

Spectral overlap of (31)P NMR resonances and the lack of reproducibility in chemical shifts corresponding to phospholipids in organic solvents challenge the accuracy of band assignments and quantification. To alleviate these problems, the use of temperature coefficients is proposed. Changes in temperature enable the resolution of overlapped resonances and provide a facile approach for the computation of temperature coefficients. The coefficients were evaluated for various glycero- and sphingo-phospholipids. Their values suggest that differences in H-bonding between the phosphate and the head groups are responsible for the changes of chemical shift with temperature. Among parent phospholipids, and in addition to sphingomyelin, the smallest temperature coefficient values (closest to zero) were observed for phosphatidylcholine, phosphatidylglycerol, dihydrosphingomyelin, and cardiolipin. The highest values were exhibited by phospholipids with protonated head groups, such as phosphatidylserine and phosphatidylethanolamine. The lowest and, in fact, negative values were measured for phospholipids with an exposed phosphate group: phosphatidic acid, ceramide-1-phosphate, and dihydroceramide-1-phosphate. Diacyl, alkyl-acyl, and alkenyl-acyl phospholipids with the same head group exhibited comparable coefficients but differed slightly in chemical shifts. Compared to their parent glycerophospholipids, all lyso analogs had greater temperature coefficients, possibly due to the presence of an extra OH capable of forming a H-bond with the phosphate group.


Asunto(s)
Cloroformo/química , Espectroscopía de Resonancia Magnética/métodos , Metanol/química , Fosfolípidos/química , Fosfolípidos/metabolismo , Temperatura , Agua/química , Animales , Encéfalo/metabolismo , Mezclas Complejas/metabolismo , Éteres/química , Hidrógeno/química , Hidrólisis , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Fosfolipasa D/metabolismo , Fosfolipasas A2/metabolismo , Fosfolípidos/análisis , Isótopos de Fósforo , Ovinos/anatomía & histología , Solventes/química
13.
Free Radic Biol Med ; 41(9): 1425-32, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17023269

RESUMEN

Lipid compositional changes in lens epithelial cells (HLE B-3) grown in a hyperoxic atmosphere were studied to determine if oxidation could cause changes in the amount and type of phospholipid similar to those found in vivo with age and cataract. The phosphatidylcholines in HLE B-3 cells were 8 times more unsaturated than the sphingomyelins. Cell viability was the same for cells grown for up to 48 h in a normoxic or hyperoxic atmosphere. Lipid oxidation was about three times higher after growth in a hyperoxic atmosphere compared with cells grown in a normoxic atmosphere. The lack of change in the relative amount of sphingomyelin and the decrease in phosphatidylcholine coupled with the increase in lysophosphatidylcholine support the idea that similar mechanisms may be responsible for the lipid compositional changes in both lens epithelial and fiber cells. It is postulated that lipases eliminate oxidized unsaturated glycerolipids, leaving a membrane increasingly composed of more ordered and more saturated sphingolipids. Oxidative stress leads to changes in membrane composition that are consistent with those seen with age in human epithelial cells. Oxidation-induced epithelial phospholipid change is an area of research that has gone virtually unexplored in the human lens and could be relevant to all cell types and may be important to lens clarity.


Asunto(s)
Células Epiteliales/metabolismo , Cristalino/metabolismo , Lisofosfatidilcolinas/metabolismo , Estrés Oxidativo , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo , Envejecimiento/metabolismo , Proliferación Celular , Células Cultivadas , Humanos , Lactante , Cristalino/química , Cristalino/citología , Peroxidación de Lípido , Espectroscopía de Resonancia Magnética , Lípidos de la Membrana/química , Oxidación-Reducción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
Genom Data ; 7: 82-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26981369

RESUMEN

Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375.

15.
J Mass Spectrom ; 39(4): 412-22, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15103655

RESUMEN

The detection of phospholipids (PLs) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was demonstrated nearly a decade ago. However, its use as a conventional tool for PL analysis has been hindered by ambiguities in peak assignments caused by spectral overlaps and difficulties in the detection of some PL classes when analytes with positively charged head groups, such as sphingomyelins (SMs) and phosphatidylcholines (PCs) are present. In this work, either a strong cation-exchange resin or CsCl crystals were added directly to the PL samples to reduce spectral complexity and enhance sensitivity. The quantitative exchange resulted in virtually only protonated or Cs+ adducts. To alleviate difficulties in the detection and identification of PL classes with ionization efficiencies lower than those of SMs and PCs, improvements in the sensitivity of negative-ion mass spectra were sought. For this purpose, several neutral and basic matrices were tried. Among them, p-nitroaniline (PNA) proved to be an advantageous alternative to the use of 2,5-dihydroxybenzoic acid (DHB), the most commonly used matrix in PL analysis. Because of its lower acidity, PNA increased the relative amount of deprotonated species and improved the sensitivity of negative-ion mass spectra. It was possible to confirm peak assignments for PL classes that normally give weak signals when DHB is used. Noteworthy is the detection (in both positive and negative modes) and conclusive identification of species in natural mixtures of phosphatidylethanolamines (PEs) and PE plasmalogens (PEps). PNA allowed the identification of PEs and PEps even in mixtures containing SMs and PCs. Although some cations related to PCs and PEs overlapped in positive-ion spectra, these interferences were eliminated in the negative mode as only the deprotonated forms of PEs and PEps were detectable and those of SMs and PCs were absent owing to their neutrality.


Asunto(s)
Fosfolípidos/análisis , Fosfolípidos/clasificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Bovinos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Fosfolípidos/química , Sensibilidad y Especificidad
16.
J Mass Spectrom ; 39(12): 1531-40, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15578747

RESUMEN

The applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to the qualitative and quantitative analysis of most mammalian phospholipid (PL) classes was demonstrated in a crude extract of porcine lens membranes. When 2,5-dihydroxybenzoic acid (DHB) was used as the matrix, positive-ion spectra allowed the accurate quantification of phosphatidylcholines (PCs) and sphingomyelins (SMs). Other PLs such as phosphatidylethanolamines (PEs), phosphatidylethanolamine plasmalogens (PEps), phosphatidylethanolamine ethers (PEes) and phosphatidylserines (PSs), could also be detected, but their lower ionization efficiency led to negative errors in their quantification. Despite this limitation, it was possible to determine relative changes among PLs extracted from cortical and nuclear regions. Negative-ion spectra were acquired with the use of p-nitroaniline (PNA) as the matrix. Because neither PCs nor SMs produce negative ions, other PL classes can be analyzed selectively. The absolute quantification of the various PL classes detectable in negative-ion spectra was also affected by differences in ionization efficiencies. However, the trends in compositional changes between cortical and nuclear-fiber PLs were in agreement with those obtained by (31)P NMR spectroscopy. MALDI-TOFMS also offers the possibility of studying variations in the acyl-chain distribution of the various species comprising each PL class. For porcine lenses, PCs, PEs and phosphatidylinositols (PIs) exhibited the greatest depletions in going from cortical to nuclear membranes. Among their individual species, those with two or more sites of unsaturation suffered the most significant reduction.


Asunto(s)
Membrana Celular/química , Cristalino/química , Fosfolípidos/análisis , Animales , Fosfolípidos/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Porcinos
17.
Sci Rep ; 4: 4509, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24676092

RESUMEN

HsTX1 toxin, from the scorpion Heterometrus spinnifer, is a 34-residue, C-terminally amidated peptide cross-linked by four disulfide bridges. Here we describe new HsTX1 analogues with an Ala, Phe, Val or Abu substitution at position 14. Complexes of HsTX1 with the voltage-gated potassium channels Kv1.3 and Kv1.1 were created using docking and molecular dynamics simulations, then umbrella sampling simulations were performed to construct the potential of mean force (PMF) of the ligand and calculate the corresponding binding free energy for the most stable configuration. The PMF method predicted that the R14A mutation in HsTX1 would yield a > 2 kcal/mol gain for the Kv1.3/Kv1.1 selectivity free energy relative to the wild-type peptide. Functional assays confirmed the predicted selectivity gain for HsTX1[R14A] and HsTX1[R14Abu], with an affinity for Kv1.3 in the low picomolar range and a selectivity of more than 2,000-fold for Kv1.3 over Kv1.1. This remarkable potency and selectivity for Kv1.3, which is significantly up-regulated in activated effector memory cells in humans, suggest that these analogues represent valuable leads in the development of therapeutics for autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Venenos de Escorpión/farmacología , Secuencia de Aminoácidos , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Línea Celular , Concentración 50 Inhibidora , Canal de Potasio Kv.1.1/antagonistas & inhibidores , Canal de Potasio Kv.1.1/química , Canal de Potasio Kv.1.1/metabolismo , Canal de Potasio Kv1.3/química , Activación de Linfocitos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Bloqueadores de los Canales de Potasio/química , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Venenos de Escorpión/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-22254281

RESUMEN

Atherosclerotic lesions form non-randomly at locations in bends and bifurcations where the local flow can be classified as 'disturbed flow' and is associated with low shear stress oscillatory or reciprocating flow. Endothelial cells in vivo are constantly exposed to mechanical stimulation due to hemodynamic loading in the form of pulsatile pressure, cyclic stretch and shear stress to maintain phenotype and control function. In conditions like atherosclerosis, the pressure and strain loading remains the same whereas the local fluid flow behavior and shear stress are altered. Common in vitro models of atherosclerosis focus primarily on shear stress without accounting for pressure and strain loading. To overcome this limitation, we used our microfluidic Endothelial Cell Culture Model (ECCM) to achieve accurate replication of pressure, strain and shear stress waveforms associated with both normal flow seen in straight sections of arteries and disturbed flow seen atherosclerosis lesion susceptible regions. We specifically recreated mechanical stresses associated with the proximal internal carotid which is a major risk factor for stroke. Cells cultured using both conditions show distinct differences in alignment and cytoskeletal organization. In summary we recreated pressure, stretch and shear stress loading seen in straight sections and in the proximal internal carotid in a cell culture compatible platform.


Asunto(s)
Aterosclerosis/fisiopatología , Enfermedades de las Arterias Carótidas/fisiopatología , Células Endoteliales , Mecanotransducción Celular , Velocidad del Flujo Sanguíneo , Células Cultivadas , Humanos , Resistencia al Corte
19.
Biomicrofluidics ; 5(3): 32006-3200611, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22662029

RESUMEN

Atherosclerotic lesions occur non-randomly at vascular niches in bends and bifurcations where fluid flow can be characterized as "disturbed" (low shear stress with both forward and retrograde flow). Endothelial cells (ECs) at these locations experience significantly lower average shear stress without change in the levels of pressure or strain, which affects the local balance in mechanical stresses. Common in vitro models of atherosclerosis focus primarily on shear stress without accounting for pressure and strain loading. To overcome this limitation, we used our microfluidic endothelial cell culture model (ECCM) to achieve accurate replication of pressure, strain, and shear stress waveforms associated with both normal flow seen in straight sections of arteries and disturbed flow seen in the abdominal aorta in the infrarenal segment at the wall distal to the inferior mesenteric artery (IMA), which is associated with high incidence of atherosclerotic lesion formation. Human aortic endothelial cells (HAECs) were cultured within the ECCM under both normal and disturbed flow and evaluated for cell shape, cytoskeletal alignment, endothelial barrier function, and inflammation using immunofluorescence microscopy and flow cytometry. Results clearly demonstrate quantifiable differences between cells cultured under disturbed flow conditions, which are cuboidal with short and randomly oriented actin microfilaments and show intermittent expression of ß-Catenin and cells cultured under normal flow. However, in the absence of pro-inflammatory stimulation, the levels of expression of activation markers: intra cellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), platelet endothelial cell adhesion molecule-1 (PECAM-1), and vascular endothelial cell growth factor - receptor 2 (VEGF-R2) known to be involved in the initiation of plaque formation were only slightly higher in HAECs cultured under disturbed flow in comparison to cells cultured under normal flow.

20.
Am J Physiol Heart Circ Physiol ; 296(1): H33-42, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19011048

RESUMEN

Sphingosine-1-phosphate (S1P) regulates various molecular and cellular events in cultured endothelial cells, such as cytoskeletal restructuring, cell-extracellular matrix interactions, and intercellular junction interactions. We utilized the venular leakage model of the cremaster muscle vascular bed in Sprague-Dawley rats to investigate the role of S1P signaling in regulation of microvascular permeability. S1P signaling is mediated by the S1P family of G protein-coupled receptors (S1P(1-5) receptors). S1P(1) and S1P(2) receptors, which transduce stimulatory and inhibitory signaling, respectively, are expressed in the endothelium of the cremaster muscle vasculature. S1P administration alone via the carotid artery was unable to protect against histamine-induced venular leakage of the cremaster muscle vascular bed in Sprague-Dawley rats. However, activation of S1P(1)-mediated signaling by SEW2871 and FTY720, two agonists of S1P(1), significantly inhibited histamine-induced microvascular leakage. Treatment with VPC 23019 to antagonize S1P(1)-regulated signaling greatly potentiated histamine-induced venular leakage. After inhibition of S1P(2) signaling by JTE-013, a specific antagonist of S1P(2), S1P was able to protect microvascular permeability in vivo. Moreover, endothelial tight junctions and barrier function were regulated by S1P(1)- and S1P(2)-mediated signaling in a concerted manner in cultured endothelial cells. These data suggest that the balance between S1P(1) and S1P(2) signaling regulates the homeostasis of microvascular permeability in the peripheral circulation and, thus, may affect total peripheral vascular resistance.


Asunto(s)
Permeabilidad Capilar/fisiología , Lisofosfolípidos/fisiología , Músculo Esquelético/irrigación sanguínea , Receptores de Lisoesfingolípidos/fisiología , Transducción de Señal/fisiología , Esfingosina/análogos & derivados , Envejecimiento/fisiología , Animales , Arterias Carótidas/fisiología , Técnica del Anticuerpo Fluorescente , Histamina/farmacología , Agonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , Homeostasis , Infusiones Intraarteriales , Lisofosfolípidos/administración & dosificación , Lisofosfolípidos/farmacología , Masculino , Músculo Esquelético/fisiología , Ratas , Ratas Sprague-Dawley , Flujo Sanguíneo Regional/fisiología , Esfingosina/administración & dosificación , Esfingosina/farmacología , Esfingosina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA