Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473776

RESUMEN

Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.


Asunto(s)
Glioblastoma , Glioma , Hipertermia Inducida , Humanos , Fosfatidilinositol 3-Quinasas , Terapia Combinada , Microambiente Tumoral
2.
Semin Cancer Biol ; 71: 109-121, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32428715

RESUMEN

Metastatic melanoma is a fatal disease with a rapid systemic dissemination. The most frequent target sites are the liver, bone, and brain. Melanoma metastases represent a heterogeneous cell population, which associates with genomic instability and resistance to therapy. Interaction of melanoma cells with the hepatic sinusoidal endothelium initiates a signaling cascade involving cytokines, growth factors, bioactive lipids, and reactive oxygen and nitrogen species produced by the cancer cell, the endothelium, and also by different immune cells. Endothelial cell-derived NO and H2O2 and the action of immune cells cause the death of most melanoma cells that reach the hepatic microvascularization. Surviving melanoma cells attached to the endothelium of pre-capillary arterioles or sinusoids may follow two mechanisms of extravasation: a) migration through vessel fenestrae or b) intravascular proliferation followed by vessel rupture and microinflammation. Invading melanoma cells first form micrometastases within the normal lobular hepatic architecture via a mechanism regulated by cross-talk with the stroma and multiple microenvironment-related molecular signals. In this review special emphasis is placed on neuroendocrine (systemic) mechanisms as potential promoters of liver metastatic growth. Growing metastatic cells undergo functional and metabolic changes that increase their capacity to withstand oxidative/nitrosative stress, which favors their survival. This adaptive process also involves upregulation of Bcl-2-related antideath mechanisms, which seems to lead to the generation of more resistant cell subclones.


Asunto(s)
Carcinoma Neuroendocrino/secundario , Endotelio/patología , Neoplasias Hepáticas/secundario , Melanoma/patología , Estrés Oxidativo , Microambiente Tumoral , Animales , Carcinoma Neuroendocrino/irrigación sanguínea , Supervivencia Celular , Humanos , Neoplasias Hepáticas/irrigación sanguínea , Oxidación-Reducción
3.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198557

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease of the motor system. It is characterized by the degeneration of both upper and lower motor neurons, which leads to muscle weakness and paralysis. ALS is incurable and has a bleak prognosis, with median survival of 3-5 years after the initial symptomatology. In ALS, motor neurons gradually degenerate and die. Many features of mitochondrial dysfunction are manifested in neurodegenerative diseases, including ALS. Mitochondria have shown to be an early target in ALS pathophysiology and contribute to disease progression. Disruption of their axonal transport, excessive generation of reactive oxygen species, disruption of the mitochondrial structure, dynamics, mitophagy, energy production, calcium buffering and apoptotic triggering have all been directly involved in disease pathogenesis and extensively reported in ALS patients and animal model systems. Alterations in energy production by motor neurons, which severely limit their survival capacity, are tightly linked to the redox status and mitochondria. The present review focuses on this link. Placing oxidative stress as a main pathophysiological mechanism, the molecular interactions and metabolic flows involved are analyzed. This leads to discussing potential therapeutic approaches targeting mitochondrial biology to slow disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Metabolismo Energético , Mitocondrias/metabolismo , Estrés Oxidativo , Animales , Humanos , Neuronas Motoras/patología , Oxidación-Reducción
4.
Biol Chem ; 400(5): 589-612, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-30352021

RESUMEN

The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.


Asunto(s)
Antioxidantes/metabolismo , Melanoma/metabolismo , Melanoma/fisiopatología , Estrés Oxidativo , Animales , Humanos , Melanoma/genética , Oxidación-Reducción , Transducción de Señal/genética
5.
Crit Rev Clin Lab Sci ; 53(4): 253-67, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26754151

RESUMEN

Metastatic spread, not primary tumors, is the leading cause of cancer death. Glutathione (γ-glutamyl-cysteinyl-glycine, GSH) is particularly relevant in cancer cells as it is involved in regulating carcinogenic mechanisms, growth and dissemination, and multidrug and radiation resistance. Upon interaction of metastatic cells with the vascular endothelium, a high percentage of metastatic cells with high GSH levels survive the combined nitrosative and oxidative stresses elicited by the vascular endothelium. GSH release from different organs, mainly the liver, and its interorgan transport through the blood circulation to metastatic foci, promote their growth. This review focuses on the relationship among GSH and different key mechanisms that facilitate metastatic cell survival and growth, i.e. adaptive responses to stress, cell death evasion and utilization of physiological neuroendocrine mechanisms. Different strategies that are aimed at sensitizing metastases to cancer therapy by depleting metastatic cell GSH are analyzed.


Asunto(s)
Glutatión , Metástasis de la Neoplasia , Neoplasias , Animales , Glutatión/metabolismo , Glutatión/fisiología , Humanos , Ratones , Neoplasias/metabolismo , Neoplasias/fisiopatología
6.
Neurotherapeutics ; 21(1): e00301, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241160

RESUMEN

Oxidative stress and neuroinflammation are major contributors to the pathophysiology of ALS. Nicotinamide riboside (a NAD+ precursor) and pterostilbene (a natural antioxidant) were efficacious in a human pilot study of ALS patients and in ALS SOD1G93A transgenic mice. Ibudilast targets different phosphodiesterases and the macrophage migration inhibitory factor, reduces neuroinflammation, and in early-phase studies improved survival and slowed progression in ALS patients. Using two ALS murine models (SOD1G93A, FUSR521C) the effects of nicotinamide riboside, pterostilbene, and ibudilast on disease onset, progression and survival were studied. In both models ibudilast enhanced the effects of nicotinamide riboside and pterostilbene on survival and neuromotor functions. The triple combination reduced microgliosis and astrogliosis, and the levels of different proinflammatory cytokines in the CSF. TNFα, IFNγ and IL1ß increased H2O2 and NO generation by motor neurons, astrocytes, microglia and endothelial cells isolated from ALS mice. Nicotinamide riboside and pterostilbene decreased H2O2 and NO generation in all these cells. Ibudilast specifically decreased TNFα levels and H2O2 generation by microglia and endothelial cells. Unexpectedly, pathophysiological concentrations of H2O2 or NO caused minimal motor neuron cytotoxicity. H2O2-induced cytotoxicity was increased by NO via a trace metal-dependent formation of potent oxidants (i.e. OH and -OONO radicals). In conclusion, our results show that the combination of nicotinamide riboside, pterostilbene and ibudilast improve neuromotor functions and survival in ALS murine models. Studies on the underlying mechanisms show that motor neuron protection involves the decrease of oxidative and nitrosative stress, the combination of which is highly damaging to motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral , Indolizinas , Niacinamida/análogos & derivados , Pirazoles , Compuestos de Piridinio , Ratones , Animales , Humanos , Superóxido Dismutasa-1 , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa , Células Endoteliales , Peróxido de Hidrógeno , Proyectos Piloto , Neuronas Motoras , Niacinamida/farmacología , Niacinamida/uso terapéutico , Ratones Transgénicos , Modelos Animales de Enfermedad , Superóxido Dismutasa , Médula Espinal
7.
Nutrients ; 16(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337635

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a chronic and progressive neurodegenerative disease that leads to the loss of motor neurons. The dietary intake of ALS patients is thought to influence the prognosis and progression of the disease. The aim of this study was to examine the nutritional, clinical and sociodemographic characteristics of ALS patients in Spain. A cross-sectional descriptive study with demographics, clinical anamnesis and anthropometric assessment was carried out. Nutritional intake was recorded and compared with dietary reference intakes (DRI). Forty subjects (25 males; 15 females) aged 54.7 ± 10.17 were included in the study. The mean weight and height were 67.99 ± 8.85 kg and 167.83 ± 8.79 cm, respectively. Clinical phenotype, time to diagnosis, year of onset and family history were not associated with the place of origin. Clinical phenotype had no influence on time of diagnosis. Caloric and protein intakes were adequate, while carbohydrate, vitamin B8 and iodine intakes were significantly lower than the DRI. Lipids; vitamins B1, B2, B3, B5, B6, B12, C and E; sodium; phosphorus; and selenium intakes were significantly higher than the recommended nutritional standards. ALS patients, who are homogeneously distributed throughout our national territory, should modify their dietary habits to minimize ultra-processed products and prioritize foods rich in healthy fats and fiber.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Masculino , Femenino , Humanos , Esclerosis Amiotrófica Lateral/epidemiología , Ingestión de Energía , Estudios Transversales , Estado Nutricional , Dieta/efectos adversos
8.
Crit Rev Clin Lab Sci ; 50(3): 65-78, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23808710

RESUMEN

Resveratrol and its naturally dimethylated analog, pterostilbene, show similar biological activities. However, the higher in vivo bioavailability of pterostilbene represents a fundamental advantage. The main focus of this review is on biomedical applications of pterostilbene. The metabolism and pharmacokinetics of this stilbene in inflammatory dermatoses and photoprotection, cancer prevention and therapy, insulin sensitivity, blood glycemia and lipid levels, cardiovascular diseases, aging, and memory and cognition are addressed. Safety and toxicity, as well as recommendations for future research and biomedical uses, are discussed. This review includes comparisons between pterostilbene and other polyphenols, with particular emphasis on resveratrol. Potential benefits of using combinations of different polyphenols are considered. Based on present evidences we conclude that pterostilbene is an active phytonutrient and also a potential drug with multiple biomedical applications.


Asunto(s)
Estilbenos/química , Estilbenos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Investigación Biomédica , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacología , Línea Celular , Humanos , Extractos Vegetales/química , Sustancias Protectoras/química , Sustancias Protectoras/farmacología
9.
J Transl Med ; 11: 72, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23517603

RESUMEN

BACKGROUND: Interleukin (IL)-6 (mainly of tumor origin) activates glutathione (GSH) release from hepatocytes and its interorgan transport to B16-F10 melanoma metastatic foci. We studied if this capacity to overproduce IL-6 is regulated by cancer cell-independent mechanisms. METHODS: Murine B16-F10 melanoma cells were cultured, transfected with red fluorescent protein, injected i.v. into syngenic C57BL/6J mice to generate lung and liver metastases, and isolated from metastatic foci using high-performance cell sorting. Stress hormones and IL-6 levels were measured by ELISA, and CRH expression in the brain by in situ hybridization. DNA binding activity of NF-κB, CREB, AP-1, and NF-IL-6 was measured using specific transcription factor assay kits. IL-6 expression was measured by RT-PCR, and silencing was achieved by transfection of anti-IL-6 small interfering RNA. GSH was determined by HPLC. Cell death analysis was distinguished using fluorescence microscopy, TUNEL labeling, and flow cytometry techniques. Statistical analyses were performed using Student's t test. RESULTS: Plasma levels of stress-related hormones (adrenocorticotropin hormone, corticosterone, and noradrenaline) increased, following a circadian pattern and as compared to non-tumor controls, in mice bearing B16-F10 lung or liver metastases. Corticosterone and noradrenaline, at pathophysiological levels, increased expression and secretion of IL-6 in B16-F10 cells in vitro. Corticosterone- and noradrenaline-induced transcriptional up-regulation of IL-6 gene involves changes in the DNA binding activity of nuclear factor-κB, cAMP response element-binding protein, activator protein-1, and nuclear factor for IL-6. In vivo inoculation of B16-F10 cells transfected with anti-IL-6-siRNA, treatment with a glucocorticoid receptor blocker (RU-486) or with a ß-adrenoceptor blocker (propranolol), increased hepatic GSH whereas decreased plasma IL-6 levels and metastatic growth. Corticosterone, but not NORA, also induced apoptotic cell death in metastatic cells with low GSH content. CONCLUSIONS: Our results describe an interorgan system where stress-related hormones, IL-6, and GSH coordinately regulate metastases growth.


Asunto(s)
Hormona Adrenocorticotrópica/fisiología , Corticosterona/fisiología , Glutatión/fisiología , Interleucina-6/fisiología , Melanoma Experimental/patología , Metástasis de la Neoplasia , Norepinefrina/fisiología , Hormona Adrenocorticotrópica/sangre , Animales , Secuencia de Bases , Línea Celular Tumoral , Corticosterona/sangre , Sondas de ADN , Electroporación , Ensayo de Inmunoadsorción Enzimática , Hibridación in Situ , Interleucina-6/genética , Ratones , Norepinefrina/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
10.
J Adv Res ; 45: 73-86, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35599107

RESUMEN

INTRODUCTION: Effective agents that could confer long-term protection against ionizing radiation in vivo would have applications in medicine, biotechnology, and in air and space travel. However, at present, drugs that can effectively protect against lethal ionizing radiations are still an unmet need. OBJECTIVE: To investigate if combinations of natural polyphenols, known for their antioxidant potential, could protect against ionizing radiations. METHODS: Plant-derived polyphenols were screened for their potential ability to confer radioprotection to mice given a lethal whole-body γ radiation (137Cs) dose expected to kill 50% of the animals in 30 days. Telomere and centromere staining, Q-FISH and comet assays were used to investigate chromosomal aberration, micronuclei formation and DNA breaks. Molecular oxidations were investigated by enzyme immunoassays and UPLC-MS/MS. RT-PCR, western blotting and siRNA-induced gene silencing were used to study signaling mechanisms and molecular interactions. RESULTS: The combination of pterostilbene (PT) and silibinin (SIL) was the most effective against γ-irradiation, resulting in 100% of the mice surviving at 30 days and 20% survival at one year. Treatment post γ-irradiation with two potential radiomitigators nicotinamide riboside (NR, a vitamin B3 derivative), and/or fibroblast-stimulating lipoprotein 1 (FSL1, a toll-like receptor 2/6 agonist), did not extend survival. However, the combination of PT, SIL, NR and FSL1 achieved a 90% survival one year post γ-irradiation. The mechanism involves induction of the Nrf2-dependent cellular antioxidant defense, reduction of NF-kB signaling, upregulation of the PGC-1α/sirtuins 1 and 3 axis, PARP1-dependent DNA repair, and stimulation of hematopoietic cell recovery. The pathway linking Nrf2, sirtuin 3 and SOD2 is key to radioprotection. Importantly, this combination did not interfere with X-ray mediated killing of different tumor cells in vivo. CONCLUSION: The combination of the radioprotectors PT and SIL with the radiomitigators NR and FSL1 confer effective, long-term protection against γ radiation in vivo. This strategy is potentially capable of protecting mammals against ionizing radiations.


Asunto(s)
NAD , Protectores contra Radiación , Ratones , Animales , Rayos gamma , Antioxidantes , Receptor Toll-Like 2/agonistas , Lipopéptidos , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico , Polifenoles/farmacología , Factor 2 Relacionado con NF-E2 , Cromatografía Liquida , Ligandos , Espectrometría de Masas en Tándem , Mamíferos
11.
Cells ; 12(3)2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36766760

RESUMEN

Circulating glucocorticoids increase during stress. Chronic stress, characterized by a sustained increase in serum levels of cortisol, has been associated in different cases with an increased risk of cancer and a worse prognosis. Glucocorticoids can promote gluconeogenesis, mobilization of amino acids, fat breakdown, and impair the body's immune response. Therefore, conditions that may favor cancer growth and the acquisition of radio- and chemo-resistance. We found that glucocorticoid receptor knockdown diminishes the antioxidant protection of murine B16-F10 (highly metastatic) melanoma cells, thus leading to a drastic decrease in their survival during interaction with the vascular endothelium. The BRAFV600E mutation is the most commonly observed in melanoma patients. Recent studies revealed that VMF/PLX40-32 (vemurafenib, a selective inhibitor of mutant BRAFV600E) increases mitochondrial respiration and reactive oxygen species (ROS) production in BRAFV600E human melanoma cell lines. Early-stage cancer cells lacking Nrf2 generate high ROS levels and exhibit a senescence-like growth arrest. Thus, it is likely that a glucocorticoid receptor antagonist (RU486) could increase the efficacy of BRAF-related therapy in BRAFV600E-mutated melanoma. In fact, during early progression of skin melanoma metastases, RU486 and VMF induced metastases regression. However, treatment at an advanced stage of growth found resistance to RU486 and VMF. This resistance was mechanistically linked to overexpression of proteins of the Bcl-2 family (Bcl-xL and Mcl-1 in different human models). Moreover, melanoma resistance was decreased if AKT and NF-κB signaling pathways were blocked. These findings highlight mechanisms by which metastatic melanoma cells adapt to survive and could help in the development of most effective therapeutic strategies.


Asunto(s)
Antioxidantes , Melanoma , Animales , Humanos , Ratones , Antioxidantes/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Melanoma/patología , Mifepristona/farmacología , Factor 2 Relacionado con NF-E2 , Proteínas Proto-Oncogénicas B-raf/genética , Especies Reactivas de Oxígeno/uso terapéutico , Receptores de Glucocorticoides
12.
Cancers (Basel) ; 15(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37444524

RESUMEN

At present, the applications and efficacy of non-ionizing radiations (NIR) in oncotherapy are limited. In terms of potential combinations, the use of biocompatible magnetic nanoparticles as heat mediators has been extensively investigated. Nevertheless, developing more efficient heat nanomediators that may exhibit high specific absorption rates is still an unsolved problem. Our aim was to investigate if externally applied magnetic fields and a heat-inducing NIR affect tumor cell viability. To this end, under in vitro conditions, different human cancer cells (A2058 melanoma, AsPC1 pancreas carcinoma, MDA-MB-231 breast carcinoma) were treated with the combination of electromagnetic fields (EMFs, using solenoids) and hyperthermia (HT, using a thermostated bath). The effect of NIR was also studied in combination with standard chemotherapy and targeted therapy. An experimental device combining EMFs and high-intensity focused ultrasounds (HIFU)-induced HT was tested in vivo. EMFs (25 µT, 4 h) or HT (52 °C, 40 min) showed a limited effect on cancer cell viability in vitro. However, their combination decreased viability to approximately 16%, 50%, and 21% of control values in A2058, AsPC1, and MDA-MB-231 cells, respectively. Increased lysosomal permeability, release of cathepsins into the cytosol, and mitochondria-dependent activation of cell death are the underlying mechanisms. Cancer cells could be completely eliminated by combining EMFs, HT, and standard chemotherapy or EMFs, HT, and anti-Hsp70-targeted therapy. As a proof of concept, in vivo experiments performed in AsPC1 xenografts showed that a combination of EMFs, HIFU-induced HT, standard chemotherapy, and a lysosomal permeabilizer induces a complete cancer regression.

13.
Front Nutr ; 10: 1232184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810917

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a chronic and progressive neurodegenerative disease that causes the death of motor neurons and alters patients' body composition. Supplementation with the antioxidants nicotinamide riboside (NR) and pterostilbene (PTER) can combat associated oxidative stress. Additionally, coconut oil is an alternative energy substrate that can address mitochondrial dysfunction. The aim of the present study is to assess the impact of a Mediterranean Diet supplemented with NR and PTER and/or with coconut oil on the anthropometric variables of patients with ALS. A prospective, mixed, randomized, analytical and experimental pilot study in humans was performed through a clinical trial (registered with ClinicalTrials.gov under number NCT03489200) with pre- and post-intervention assessments. The sample was made up of 40 subjects categorized into four study groups (Control, Antioxidants, Coconut oil, and Antioxidants + Coconut oil). Pre- and post-intervention anthropometric assessments were carried out to determine the following data: weight, percentage of fat and muscle mass, skinfolds, body perimeters, Body Mass Index (BMI), Waste-to-Hip Index (WHI) and Waist-Height Ratio (WHR). Compared to the Control group, GAx significantly increased muscle mass percentage and decreased fat mass percentage, triceps, iliac crest, and abdominal skinfolds. GCoco significantly increased muscle mass percentage and decreased fat mass percentage, subscapular skinfolds, and abdominal skinfolds. GAx + coco significantly increased muscle mass percentage and decreased abdominal skinfolds. Therefore, our results suggest that the Mediterranean Diet supplemented with NR and PTER and the Mediterranean Diet supplemented with coconut oil (ketogenic diet) are the two nutritional interventions that have reported the greatest benefits, at anthropometric level.

14.
J Biol Chem ; 286(18): 15716-27, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21393247

RESUMEN

B16 melanoma F10 (B16-F10) cells with high glutathione (GSH) content show high metastatic activity in vivo. An intertissue flow of GSH, where the liver is the main reservoir, can increase GSH content in metastatic cells and promote their growth. We have studied here possible tumor-derived molecular signals that could activate GSH release from hepatocytes. GSH efflux increases in hepatocytes isolated from mice bearing liver or lung metastases, thus suggesting a systemic mechanism. Fractionation of serum-free conditioned medium from cultured B16-F10 cells and monoclonal antibody-induced neutralization techniques facilitated identification of interleukin (IL)-6 as a tumor-derived molecule promoting GSH efflux in hepatocytes. IL-6 activates GSH release through a methionine-sensitive/organic anion transporter polypeptide 1- and multidrug resistance protein 1-independent channel located on the sinusoidal site of hepatocytes. Specific siRNAs were used to knock down key factors in the main signaling pathways activated by IL-6, which revealed a STAT3-dependent mechanism. Our results show that IL-6 (mainly of tumor origin in B16-F10-bearing mice) may facilitate GSH release from hepatocytes and its interorgan transport to metastatic growing foci.


Asunto(s)
Glutatión/metabolismo , Hepatocitos/metabolismo , Interleucina-6/metabolismo , Melanoma/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular Tumoral , Glutatión/genética , Hepatocitos/patología , Interleucina-6/genética , Melanoma/genética , Melanoma/patología , Ratones , Metástasis de la Neoplasia , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
15.
J Transl Med ; 10: 8, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22233801

RESUMEN

BACKGROUND: Bcl-2 is believed to contribute to melanoma chemoresistance. However, expression of Bcl-2 proteins may be different among melanomas. Thus correlations among expression of Bcl-2-related proteins and in vivo melanoma progression, and resistance to combination therapies, was investigated. METHODS: Human A375 melanoma was injected s.c. into immunodeficient nude mice. Protein expression was studied in tumor samples obtained by laser microdisection. Transfection of siRNA or ectopic overexpression were applied to manipulate proteins which are up- or down-regulated, preferentially, during melanoma progression. Anti-bcl-2 antisense oligonucleotides and chemoradiotherapy (glutathione-depleting agents, paclitaxel protein-binding particles, daunorubicin, X rays) were administered in combination. RESULTS: In vivo A375 cells down-regulated pro-apoptotic bax expression; and up-regulated anti-apoptotic bcl-2, bcl-xl, and mcl-1, however only Bcl-2 appeared critical for long-term tumor cell survival and progression in vivo. Reduction of Bcl-2, combined with partial therapies, decreased melanoma growth. But only Bcl-2 targeting plus the full combination of chemoradiotherapy eradicated A375 melanoma, and led to long-term survival (> 120 days) without recurrence in 80% of mice. Tumor regression was not due to immune stimulation. Hematology and clinical chemistry data were within accepted clinical toxicities. CONCLUSION: Strategies to target Bcl-2, may increase the effectiveness of antitumor therapies against melanomas overexpressing Bcl-2 and likely other Bcl-2-related antiapoptotic proteins.


Asunto(s)
Quimioradioterapia , Glutatión/metabolismo , Melanoma/terapia , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X/metabolismo , Paclitaxel Unido a Albúmina , Albúminas/farmacología , Albúminas/uso terapéutico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocinas/sangre , Daunorrubicina/farmacología , Daunorrubicina/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Isoxazoles/farmacología , Isoxazoles/uso terapéutico , Melanoma/sangre , Melanoma/genética , Melanoma/patología , Ratones , Ratones Desnudos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Inducción de Remisión , Análisis de Supervivencia
16.
Cancers (Basel) ; 14(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35892873

RESUMEN

N-acetylcysteine (NAC) is a direct Cys donor and a promoter of glutathione (GSH) synthesis. GSH regulates melanoma growth and NAC has been suggested to increase melanoma metastases in mice. We found that high therapeutic doses of NAC do not increase the growth of melanoma xenografts, but can cause metastatic spread and distant metastases. Nevertheless, this is not due to an antioxidant effect since NAC, in fact, increases the generation of reactive oxygen species in the growing metastatic melanoma. Trolox, an antioxidant vitamin E derivative, administered in vivo, decreased metastatic growth. Metastatic cells isolated from NAC-treated mice showed an increase in the nuclear translocation of Nrf2, as compared to controls. Nrf2, a master regulator of the antioxidant response, controls the expression of different antioxidant enzymes and of the γ-glutamylcysteine ligase (the rate-limiting step in GSH synthesis). Cystine uptake through the xCT cystine-glutamate antiporter (generating intracellular Cys) and the γ-glutamylcysteine ligase activity are key to control metastatic growth. This is associated to an increase in the utilization of L-Gln by the metastatic cells, another metastases promoter. Our results demonstrate the potential of NAC as an inducer of melanoma metastases spread, and suggest that caution should be taken when administering GSH promoters to cancer patients.

17.
Antioxidants (Basel) ; 11(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35739995

RESUMEN

Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.

18.
Crit Rev Clin Lab Sci ; 48(5-6): 197-216, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22141580

RESUMEN

Natural polyphenols are secondary metabolites of plants involved in defense against different types of stress. Extracts containing these compounds have been used for thousands of years in traditional eastern medicine. Polyphenols act on multiple targets in pathways and mechanisms related to carcinogenesis, tumor cell proliferation and death, inflammation, metastatic spread, angiogenesis, or drug and radiation resistance. Nevertheless, reported effects claimed for polyphenols are controversial, since correlations between in vitro effects and in vivo evidence are poorly established. The main discrepancy between health claims versus clinical observations is the frequent use of nonphysiologically relevant concentrations of these compounds and their metabolites in efficacy and mechanistic studies. The present review will discuss how in vivo administration correlates with polyphenol metabolism, toxicity, and bioavailability. Analysis of the general application of polyphenols in cancer therapy will be complemented by potential applications in the therapy of specific tumors, including melanoma, colorectal and lung cancers. Possible pharmaceutical formulations, structural modifications, combinations, and delivery systems aimed to increase bioavailability and/or biological effects will be discussed. Final remarks will include recommendations for future research and developments.


Asunto(s)
Neoplasias/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Plantas Medicinales/química , Polifenoles/uso terapéutico , Animales , Animales de Laboratorio , Disponibilidad Biológica , Biotransformación , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Medicina Tradicional , Melanoma/tratamiento farmacológico , Estructura Molecular , Neoplasias/metabolismo , Extractos Vegetales/farmacocinética , Polifenoles/química , Polifenoles/farmacocinética , Neoplasias Cutáneas/tratamiento farmacológico , Pruebas de Toxicidad
19.
Antioxidants (Basel) ; 10(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34943110

RESUMEN

Oxidative stress has been proposed as a major mechanism of damage to motor neurons associated with the progression of amyotrophic lateral sclerosis (ALS). Astrocytes are the most numerous glial cells in the central nervous system and, under physiological conditions, protect neurons from oxidative damage. However, it is uncertain how their reactive phenotype may affect motor neurons during ALS progression. In two different ALS mouse models (SOD1G93A and FUS-R521C), we found that increased levels of proinflammatory interleukin 6 facilitate glutathione (GSH) release from the liver to blood circulation, which can reach the astrocytes and be channeled towards motor neurons as a mechanism of antioxidant protection. Nevertheless, although ALS progression is associated with an increase in GSH efflux from astrocytes, generation of reactive oxygen species also increases, suggesting that as the disease progresses, astrocyte-derived oxidative stress could be key to motor-neuron damage.

20.
Biomedicines ; 9(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34440204

RESUMEN

Charcot first described amyotrophic lateral sclerosis (ALS) between 1865 and 1874 as a sporadic adult disease resulting from the idiopathic progressive degeneration of the motor neuronal system, resulting in rapid, progressive, and generalized muscle weakness and atrophy. There is no cure for ALS and no proven therapy to prevent it or reverse its course. There are two drugs specifically approved for the treatment of ALS, riluzol and edaravone, and many others have already been tested or are following clinical trials. However, at the present moment, we still cannot glimpse a true breakthrough in the treatment of this devastating disease. Nevertheless, our understanding of the pathophysiology of ALS is constantly growing. Based on this background, we know that oxidative stress, alterations in the NAD+-dependent metabolism and redox status, and abnormal mitochondrial dynamics and function in the motor neurons are at the core of the problem. Thus, different antioxidant molecules or NAD+ generators have been proposed for the therapy of ALS. This review analyzes these options not only in light of their use as individual molecules, but with special emphasis on their potential association, and even as part of broader combined multi-therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA