Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054964

RESUMEN

While it is generally acknowledged that drought is one of the main abiotic factors affecting plant growth, how mineral nutrition is specifically and negatively affected by water deficit has received very little attention, other than being analyzed as a consequence of reduced growth. Therefore, Brassica napus plants were subjected to a gradual onset of water deficits (mild, severe, or severe extended), and leaves were analyzed at the ionomic, transcriptomic and metabolic levels. The number of Differentially Expressed Genes (DEGs) and of the most differentially accumulated metabolites increased from mild (525 DEGs, 57 metabolites) to severe (5454 DEGs, 78 metabolites) and severe extended (9346 DEGs, 95 metabolites) water deficit. Gene ontology enrichment analysis of the 11,747 DEGs identified revealed that ion transport was one of the most significant processes affected, even under mild water deficit, and this was also confirmed by the shift in ionomic composition (mostly micronutrients with a strong decrease in Mo, Fe, Zn, and Mn in leaves) that occurred well before growth reduction. The metabolomic data and most of the transcriptomic data suggested that well-known early leaf responses to drought such as phytohormone metabolism (ABA and JA), proline accumulation, and oxidative stress defense were induced later than repression of genes related to nutrient transport.


Asunto(s)
Brassica napus/fisiología , Sequías , Metaboloma , Minerales/metabolismo , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Transcriptoma , Biología Computacional/métodos , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Estrés Fisiológico/genética
2.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769110

RESUMEN

The early and specific diagnosis of a macronutrient deficiency is challenging when seeking to better manage fertilizer inputs in the context of sustainable agriculture. Consequently, this study explored the potential for transcriptomic and metabolomic analysis of Brassica napus roots to characterize the effects of six individual macronutrient deprivations (N, Mg, P, S, K, and Ca). Our results showed that before any visual phenotypic response, all macronutrient deprivations led to a large modulation of the transcriptome and metabolome involved in various metabolic pathways, and some were common to all macronutrient deprivations. Significantly, comparative transcriptomic analysis allowed the definition of a subset of 3282, 2011, 6325, 1384, 439, and 5157 differentially expressed genes (DEGs) specific to N, Mg, P, S, K, and Ca deprivations, respectively. Surprisingly, gene ontology term enrichment analysis performed on this subset of specific DEGs highlighted biological processes that are common to a number of these macronutrient deprivations, illustrating the complexity of nutrient interactions. In addition, a set of 38 biochemical compounds that discriminated the macronutrient deprivations was identified using a metabolic approach. The opportunity to use these specific DEGs and/or biochemical compounds as potential molecular indicators to diagnose macronutrient deficiency is discussed.


Asunto(s)
Brassica napus/metabolismo , Metaboloma , Nutrientes/deficiencia , Raíces de Plantas/metabolismo , Estrés Fisiológico , Valor Nutritivo , Proteómica
3.
Planta ; 249(5): 1645-1651, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30820649

RESUMEN

MAIN CONCLUSION: Modulation of gene expression in roots of Brassica napus by silicon (Si) supply could allow plants to cope with future stresses. The origin of the beneficial effects of silicon (Si) in plants, especially when they are subject to stress, remains poorly understood. Some authors have shown that Si alleviates plant stress and consider that this is mainly due to a mechanical effect on the cell wall. In addition, the other studies have shown that Si can also affect gene expression and modulate a number of metabolic pathways, especially in plants cultivated under stress conditions. Previously, Haddad et al. (Front Plant Sci 9:5-16, 2018) showed that a pretreatment of Brassica napus plants with Si (1.7 mM) for 1 week alleviated the stress induced by N privation. These results suggest that this improved resistance in Si-treated plants might be due to the establishment of defense mechanisms prior to exposure to the N stress. The aim of the current work was to test this assumption in Brassica napus roots (where Si is mainly stored) using a transcriptomic approach via the RNA sequencing. Our results indicated that the Si supply leads to a modulation of the expression of genes in Brassica napus roots. Functional categorization of the differentially expressed genes demonstrated that numerous genes are involved in different metabolic pathways and especially in cell wall synthesis, phytohormone metabolism, and stress responses. All these results show that Si modifies the root metabolism of B. napus, which could allow a better adaptation to future stresses.


Asunto(s)
Brassica napus/efectos de los fármacos , Brassica napus/metabolismo , Silicio/farmacología , Brassica napus/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
4.
Planta ; 250(6): 2047-2062, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31555901

RESUMEN

MAIN CONCLUSION: Specific combinations of physiological and molecular parameters associated with N and S remobilization measured at the onset of flowering were predictive of final crop performances in oilseed rape. Oilseed rape (Brassica napus L.) is a high nitrogen (N) and sulphur (S) demanding crop. Nitrogen- and S-remobilization processes allow N and S requirements to reproductive organs to be satisfied when natural uptake is reduced, thus ensuring high yield and seed quality. The quantification of physiological and molecular indicators of early N and S remobilization could be used as management tools to correct N and S fertilization. However, the major limit of this corrective strategy is to ensure the correlation between final performances-related variables and early measured parameters. In our study, four genotypes of winter oilseed rape (OSR) were grown until seed maturity under four nutritional modalities combining high and/or low N and S supplies. Plant final performances, i.e., seed production, N- and S-harvest indexes, seed N and S use efficiencies, and early parameters related to N- or S-remobilization processes, i.e., photosynthetic leaf area, N and S leaf concentrations, leaf soluble protein and leaf sulphate concentrations, and leaf RuBisCO abundance at flowering, were measured. We demonstrated that contrasting final performances existed according to the N and S supplies. An optimal N:S ratio supply could explain the treatment-specific crop performances, thus justifying N and S concurrent managements. Specific combinations of early measured plant parameters could be used to predict final performances irrespective of the nutritional supply and the genotype. This work demonstrates the potential of physiological and molecular indicators measured at flowering to reflect the functioning of N- and S-compound remobilization and to predict yield and quality penalties. However, because the predictive models are N and S independent, instant N and S leaf analyses are required to further adjust the adequate fertilization. This study is a proof of a concept which opens prospects regarding instant diagnostic tools in the context of N and S mineral fertilization management.


Asunto(s)
Brassica napus/metabolismo , Nitrógeno/metabolismo , Azufre/metabolismo , Brassica napus/crecimiento & desarrollo , Brassica napus/fisiología , Producción de Cultivos , Flores/crecimiento & desarrollo , Flores/metabolismo , Nitrógeno/deficiencia , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Semillas/metabolismo , Sulfatos/metabolismo , Azufre/deficiencia
5.
Plant Cell Physiol ; 59(10): 2052-2063, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982633

RESUMEN

SAG12 is the most widely used senescence-associated reference gene for characterizing leaf senescence, and the increase in SAG12 protein during leaf senescence is remarkable. However, the role of this cysteine protease in N remobilization and the leaf senescence process remains unclear. The role of SAG12 has been poorly investigated and the few reports dealing with this are somewhat controversial. Indeed, sag12 Arabidopsis mutants have not shown any phenotype, while OsSAG12-1 and OsSAG12-2 overexpression in rice moderates senescence progression. Therefore, this study aims at clarifying the role of the SAG12 cysteine protease during the entire plant life span and during leaf senescence. Arabidopsis thaliana plants knocked-out for the SAG12 gene (sag12) did not exhibit any special phenotypic traits when grown under optimal nitrogen supply (HN), suggesting that other cysteine proteases could provide compensatory effects. Moreover, for the first time, this study shows that aspartate protease activity is significantly increased in sag12. Among the putative aspartate proteases involved, a CND41-like aspartate protease has been identified. Under low nitrogen (LN) availability, when inducible proteolytic systems are not sufficient to cope with SAG12 depletion, a decrease in yield is observed. Altogether, these results show that SAG12 (and perhaps also aspartate proteases) could be involved in RuBisCO degradation during the leaf senescence associated with seed filling.


Asunto(s)
Proteasas de Cisteína/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteasas de Cisteína/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética
6.
J Exp Bot ; 67(19): 5631-5641, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27625417

RESUMEN

The composition of the ionome is closely linked to a plant's nutritional status. Under certain deficiencies, cross-talk induces unavoidable accumulation of some nutrients, which upsets the balance and modifies the ionomic composition of plant tissues. Rapeseed plants (Brassica napus L.) grown under controlled conditions were subject to individual nutrient deficiencies (N, K, P, Ca, S, Mg, Fe, Cu, Zn, Mn, Mo, or B) and analyzed by inductively high-resolution coupled plasma mass spectrometry to determine the impact of deprivation on the plant ionome. Eighteen situations of increased uptake under mineral nutrient deficiency were identified, some of which have already been described (K and Na, S and Mo, Fe, Zn and Cu). Additionally, as Mo uptake was strongly increased under S, Fe, Cu, Zn, Mn, or B deprivation, the mechanisms underlying the accumulation of Mo in these deficient plants were investigated. The results suggest that it could be the consequence of multiple metabolic disturbances, namely: (i) a direct disturbance of Mo metabolism leading to an up-regulation of Mo transporters such as MOT1, as found under Zn or Cu deficiency, which are nutrients required for synthesis of the Mo cofactor; and (ii) a disturbance of S metabolism leading to an up-regulation of root SO42- transporters, causing an indirect increase in the uptake of Mo in S, Fe, Mn, and B deficient plants.


Asunto(s)
Brassica napus/metabolismo , Molibdeno/metabolismo , Brassica napus/fisiología , Espectrometría de Masas , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/fisiología , Minerales/metabolismo , Molibdeno/deficiencia , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología
7.
BMC Plant Biol ; 15: 59, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848818

RESUMEN

BACKGROUND: Oilseed rape is the third largest oleaginous crop in the world but requires high levels of N fertilizer of which only 50% is recovered in seeds. This weak N use efficiency is associated with a low foliar N remobilization, leading to a significant return of N to the soil and a risk of pollution. Contrary to what is observed during senescence in the vegetative stages, N remobilization from stems and leaves is considered efficient during monocarpic senescence. However, the contribution of stems towards N management and the cellular mechanisms involved in foliar remobilization remain largely unknown. To reach this goal, the N fluxes at the whole plant level from bolting to mature seeds and the processes involved in leaf N remobilization and proteolysis were investigated in two contrasting genotypes (Aviso and Oase) cultivated under ample or restricted nitrate supply. RESULTS: During seed filling in both N conditions, Oase efficiently allocated the N from uptake to seeds while Aviso favoured a better N remobilization from stems and leaves towards seeds. Nitrate restriction decreased seed yield and oil quality for both genotypes but Aviso had the best seed N filling. Under N limitation, Aviso had a better N remobilization from leaves to stems before the onset of seed filling. Afterwards, the higher N remobilization from stems and leaves of Aviso led to a higher final N amount in seeds. This high leaf N remobilization is associated with a better degradation/export of insoluble proteins, oligopeptides, nitrate and/or ammonia. By using an original method based on the determination of Rubisco degradation in the presence of inhibitors of proteases, efficient proteolysis associated with cysteine proteases and proteasome activities was identified as the mechanism of N remobilization. CONCLUSION: The results confirm the importance of foliar N remobilization after bolting to satisfy seed filling and highlight that an efficient proteolysis is mainly associated with (i) cysteine proteases and proteasome activities and (ii) a fine coordination between proteolysis and export mechanisms. In addition, the stem may act as transient storage organs in the case of an asynchronism between leaf N remobilization and N demand for seed filling.


Asunto(s)
Brassica napus/genética , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Aceites de Plantas/metabolismo , Tallos de la Planta/metabolismo , Proteolisis , Semillas/metabolismo , Aminoácidos/metabolismo , Biomasa , Brassica napus/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Clorofila/metabolismo , Genotipo , Glutamato Deshidrogenasa/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Cinética , Nitratos/farmacología , Nitrógeno/farmacología , Hojas de la Planta/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteolisis/efectos de los fármacos , Ribulosa-Bifosfato Carboxilasa/metabolismo , Semillas/efectos de los fármacos , Solubilidad
8.
J Exp Bot ; 66(20): 6175-89, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26139826

RESUMEN

Identification of early sulphur (S) deficiency indicators is important for species such as Brassica napus, an S-demanding crop in which yield and the nutritional quality of seeds are negatively affected by S deficiency. Because S is mostly stored as SO4 (2-) in leaf cell vacuoles and can be mobilized during S deficiency, this study investigated the impact of S deprivation on leaf osmotic potential in order to identify compensation processes. Plants were exposed for 28 days to S or to chlorine deprivation in order to differentiate osmotic and metabolic responses. While chlorine deprivation had no significant effects on growth, osmotic potential and nitrogen metabolism, Brassica napus revealed two response periods to S deprivation. The first one occurred during the first 13 days during which plant growth was maintained as a result of vacuolar SO4 (2-) mobilization. In the meantime, leaf osmotic potential of S-deprived plants remained similar to control plants despite a reduction in the SO4 (2-) osmotic contribution, which was fully compensated by an increase in NO3 (-), PO4 (3-) and Cl(-) accumulation. The second response occurred after 13 days of S deprivation with a significant reduction in growth, leaf osmotic potential, NO3 (-) uptake and NO3 (-) reductase activity, whereas amino acids and NO3 (-) were accumulated. This kinetic analysis of S deprivation suggested that a ([Cl(-)]+[NO3 (-)]+[PO4 (3-)]):[SO4 (2-)] ratio could provide a relevant indicator of S deficiency, modified nearly as early as the over-expression of genes encoding SO4 (2-) tonoplastic or plasmalemmal transporters, with the added advantage that it can be easily quantified under field conditions.


Asunto(s)
Brassica napus/metabolismo , Nitratos/metabolismo , Ósmosis/fisiología , Sulfatos/metabolismo , Azufre/deficiencia , Hojas de la Planta/metabolismo
9.
J Exp Bot ; 66(9): 2461-73, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25792758

RESUMEN

Oilseed rape, a crop requiring a high level of nitogen (N) fertilizers, is characterized by low N use efficiency. To identify the limiting factors involved in the N use efficiency of winter oilseed rape, the response to low N supply was investigated at the vegetative stage in 10 genotypes by using long-term pulse-chase (15)N labelling and studying the physiological processes of leaf N remobilization. Analysis of growth and components of N use efficiency allowed four profiles to be defined. Group 1 was characterized by an efficient N remobilization under low and high N conditions but by a decrease of leaf growth under N limitation. Group 2 showed a decrease in leaf growth under low N supply that was associated with a low N remobilization efficiency under both N supplies despite a high remobilization of soluble proteins. In response to N limitation, Group 3 is characterized by an increase in N use efficiency and leaf N remobilization compared with high N that is not sufficient to sustain the leaf biomass production at a similar level to non-limited plants. Genotypes of Group 4 subjected to low nitrate were able to maintain leaf growth to the same level as under high N. The profiling approach indicated that enhancement of amino acid export and soluble protein degradation was crucial for N remobilization improvement. At the whole-plant level, N fluxes revealed that Group 4 showed a high N remobilization in source leaves combined with a better N utilization in young leaves. Consequently, an enhanced N remobilization limits N loss in fallen leaves, but this remobilized N needs to be efficiently utilized in young leaves to improve N use efficiency.


Asunto(s)
Brassica napus/genética , Nitrógeno/metabolismo , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo
10.
J Exp Bot ; 65(14): 3813-24, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24790115

RESUMEN

Despite its worldwide economic importance for food (oil, meal) and non-food (green energy and chemistry) uses, oilseed rape has a low nitrogen (N) use efficiency (NUE), mainly due to the low N remobilization efficiency (NRE) observed during the vegetative phase when sequential leaf senescence occurs. Assuming that improvement of NRE is the main lever for NUE optimization, unravelling the cellular mechanisms responsible for the recycling of proteins (the main N source in leaf) during sequential senescence is a prerequisite for identifying the physiological and molecular determinants that are associated with high NRE. The development of a relevant molecular indicator (SAG12/Cab) of leaf senescence progression in combination with a (15)N-labelling method were used to decipher the N remobilization associated with sequential senescence and to determine modulation of this process by abiotic factors especially N deficiency. Interestingly, in young leaves, N starvation delayed senescence and induced BnD22, a water-soluble chlorophyll-binding protein that acts against oxidative alterations of chlorophylls and exhibits a protease inhibitor activity. Through its dual function, BnD22 may help to sustain sink growth of stressed plants and contribute to a better utilization of N recycled from senescent leaves, a physiological trait that could improve NUE. Proteomics approaches have revealed that proteolysis involves chloroplastic FtsH protease in the early stages of senescence, aspartic protease during the course of leaf senescence, and the proteasome ß1 subunit, mitochondria processing protease and SAG12 (cysteine protease) during the later senescence phases. Overall, the results constitute interesting pathways for screening genotypes with high NRE and NUE.


Asunto(s)
Brassica napus/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Modelos Biológicos , Proteínas de Plantas/metabolismo , Proteolisis
11.
Plants (Basel) ; 12(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375874

RESUMEN

In many crops species, sulfur (S) deprivation negatively affects growth, seed yield quality and plant health. Furthermore, silicon (Si) is known to alleviate many nutritional stresses but the effects of Si supply on plants subjected to S deficiency remain unclear and poorly documented. The objective of this study was to evaluate whether Si supply would alleviate the negative effects of S deprivation on root nodulation and atmospheric dinitrogen (N2) fixation capacity in Trifolium incarnatum subjected (or not) to long-term S deficiency. For this, plants were grown for 63 days in hydroponic conditions with (500 µM) or without S and supplied (1.7 mM) or not with Si. The effects of Si on growth, root nodulation and N2 fixation and nitrogenase abundance in nodules have been measured. The most important beneficial effect of Si was observed after 63 days. Indeed, at this harvest time, a Si supply increased growth, the nitrogenase abundance in nodules and N2 fixation in S-fed and S-deprived plants while a beneficial effect on the number and total biomass of nodules was only observed in S-deprived plants. This study shows clearly for the first time that a Si supply alleviates negative effects of S deprivation in Trifolium incarnatum.

12.
J Exp Bot ; 63(14): 5245-58, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22844096

RESUMEN

N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.


Asunto(s)
Brassica napus/metabolismo , Nitrógeno/metabolismo , Suelo/química , Transporte Biológico , Brassica napus/crecimiento & desarrollo , Ambiente , Fertilizantes/análisis , Glutamato Deshidrogenasa/metabolismo , Hidroponía , Bombas Iónicas/metabolismo , Nitratos/metabolismo , Isótopos de Nitrógeno/metabolismo , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Compuestos de Amonio Cuaternario/metabolismo , Urea/metabolismo
13.
Plants (Basel) ; 11(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35736757

RESUMEN

Silicon (Si) is known to alleviate many nutritional stresses. However, in Brassica napus, which is a highly S-demanding species, the Si effect on S deficiency remains undocumented. The aim of this study was to assess whether Si alleviates the negative effects of S deficiency on Brassica napus and modulates root sulfate uptake capacity and S accumulation. For this, Brassica napus plants were cultivated with or without S and supplied or not supplied with Si. The effects of Si on S content, growth, expression of sulfate transporter genes (BnaSultr1.1; BnaSultr1.2) and sulfate transporters activity in roots were monitored. Si supply did not mitigate growth or S status alterations due to S deprivation but moderated the expression of BnaSultr1.1 in S-deprived plants without affecting the activity of root sulfate transporters. The effects of Si on the amount of S taken-up and on S transporter gene expression were also evaluated after 72 h of S resupply. In S-deprived plants, S re-feeding led to a strong decrease in the expression of both S transporter genes as expected, except in Si-treated plants where BnaSultr1.1 expression was maintained over time. This result is discussed in relation to the similar amount of S accumulated regardless of the Si treatment.

14.
Plant Direct ; 6(8): e402, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35949952

RESUMEN

One of the main limiting factors of plant yield is drought, and while the physiological responses to this environmental stress have been broadly described, research addressing its impact on mineral nutrition is scarce. Brassica napus and Triticum aestivum were subjected to moderate or severe water deficit, and their responses to drought were assessed by functional ionomic analysis, and derived calculation of the net uptake of 20 nutrients. While the uptake of most mineral nutrients decreased, Fe, Zn, Mn, and Mo uptake were impacted earlier and at a larger scale than most physiological parameters assessed (growth, ABA concentration, gas exchanges and photosynthetic activity). Additionally, in B. napus, the patterns of 183 differentially expressed genes in leaves related to the ionome (known ionomic genes, KIGs) or assumed to be involved in transport of a given nutrient were analyzed. This revealed three patterns of gene expression under drought consisting of up (transport of Cl and Co), down (transport of N, P, B, Mo, and Ni), or mixed levels (transport of S, Mg, K, Zn, Fe, Cu, or Mn) of regulation. The three patterns of gene regulations are discussed in relation to specific gene functions, changes of leaf ionomic composition and with consideration of the crosstalks that have been established between elements. It is suggested that the observed reduction in Fe uptake occurred via a specific response to drought, leading indirectly to reduced uptake of Zn and Mn, and these may be taken up by common transporters encoded by genes that were downregulated.

15.
Acta Orthop Belg ; 77(4): 453-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21954752

RESUMEN

Severe posttraumatic elbow stiffness represents a significant invalidity. Between 1990 and 2005 two surgeons performed open elbow arthrolysis in 30 adult patients (6 women, 24 men, mean age 30.8 years). All cases resulted from severe initial trauma, which had occurred on average 15.5 months previously. Four patients had extrinsic and 18 had mixed contractures; 13 had heterotopic ossifications. Operative complications included two peroperative joint instabilities and 3 transient nerve palsies. Seven elbows were remobilized under anaesthesia, one month after the arthrolysis. Twenty-two patients could be reviewed, on average 56 months after the arthrolysis. Seventy seven percent of the patients were satisfied. At final follow-up, the average arc of flexion-extension was 95 degrees +/- 15 degrees (average flexion 120 degrees +/- 13 degrees, average flexion contracture 31 degrees +/- 6 degrees), with a mean improvement of 51 degrees relative to the preoperative range (p < 0.001). The average arc of forearm rotation at final follow-up was 151 degrees +/- 23 degrees, with a mean improvement of 41 degrees (p < 0.05). No patient suffered persistent weakness or instability. The average VAS was 5/10, the average MEPI score 76, with 6 excellent, 6 good, 6 fair and 4 poor results, mainly because of persisting pain. The average DASH score was 31.6 and the average SF-36 was 66. Significant correlations were observed between VAS and DASH, MEPI and SF-36. This series demonstrates that open arthrolysis may restore acceptable elbow motion in young active patients presenting with elbow stiffness following major trauma. However, full restoration of motion is rare; only 18% of the patients regained the functional arcs of motion reported by Morrey, but the majority were satisfied, given their preoperative degree of elbow stiffness. The ultimate result from both the patient's and the surgeon's perspectives is strongly dependent on persisting pain, which was frequent in this series and influenced the DASH, MEPI and the SF-36 scores. Arthrolysis did not address the issue, if pain was the chief complaint.


Asunto(s)
Artroplastia , Contractura/cirugía , Lesiones de Codo , Adolescente , Adulto , Contractura/etiología , Articulación del Codo/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rango del Movimiento Articular , Adulto Joven
16.
Front Plant Sci ; 12: 641648, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613614

RESUMEN

The composition of the functional ionome was studied in Brassica napus and Triticum aestivum with respect to the response of 20 elements under macronutrient deprivation. Analysis of relative root contents showed that some nutrients, such as Fe, Ni, Cu, Na, V, and Co, were largely sequestered in roots. After 10 days of deprivation of each one of these 6 macronutrients, plant growth was similar to control plants, and this was probably the result of remobilization from roots (Mg and Ca) or old leaves (N, P, K, S). Some tissue concentrations and net nutrient uptakes into roots were either decreased or increased, revealing multiple interactions (93 in wheat, 66 in oilseed rape) that were common to both species (48) or were species specific. While some interactions have been previously described (increased uptake of Na under K deficiency; or increased uptake of Mo and Se under S deficiency), a number of new interactions were found and some key mechanisms underlying their action have been proposed from analysis of Arabidopsis mutants. For example, nitrate uptake seemed to be functionally linked to Na(influx, while the uptake of vanadium was probably mediated by sulfate transporters whose expression was stimulated during S deprivation.

17.
Front Plant Sci ; 12: 641678, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643368

RESUMEN

The specific variation in the functional ionome was studied in Brassica napus and Triticum aestivum plants subjected to micronutrient or beneficial mineral nutrient deprivation. Effects of these deprivations were compared to those of macronutrient deprivation. In order to identify early events, plants were harvested after 22 days, i.e., before any significant reduction in growth relative to control plants. Root uptake, tissue concentrations and relative root nutrient contents were analyzed revealing numerous interactions with respect to the 20 elements quantified. The assessment of the functional ionome under individual mineral nutrient deficiency allows the identification of a large number of interactions between elements, although it is not totally exhaustive, and gives access to specific ionomic signatures that discriminate among deficiencies in N, P, S, K, Ca, Mn, Fe, Zn, Na, Si, and Se in both species, plus Mg, Cl, Cu, and Mo in wheat. Ionome modifications and components of ionomic signatures are discussed in relation to well-known mechanisms that may explain crosstalks between mineral nutrients, such as between Na and K, V, Se, Mo and S or Fe, Zn and Cu. More surprisingly, when deprived of beneficial nutrients such as Na, Si, Co, or Se, the plant ionome was strongly modified while these beneficial nutrients contributed greatly to the leaf ionomic signature of most mineral deficiencies.

18.
Proteomics ; 9(13): 3580-608, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19609964

RESUMEN

Our goal was to identify the leaf proteomic changes which appeared during N remobilisation that were associated or not associated with senescence of oilseed rape in response to contrasting nitrate availability. Remobilisation of N and leaf senescence status were followed using (15)N tracing, patterns of chlorophyll level, total protein content and a molecular indicator based on expression of senescence-associated gene 12/Cab genes. Three phases associated with N remobilisation were distinguished. Proteomics revealed that 55 proteins involved in metabolism, energy, detoxification, stress response, proteolysis and protein folding, were significantly induced during N remobilisation. Four proteases were specifically identified. FtsH, a chloroplastic protease, was induced transiently during the early stages of N remobilisation. Considering the dynamics of N remobilisation, chlorophyll and protein content, the pattern of FtsH expression indicated that this protease could be involved in the degradation of chloroplastic proteins. Aspartic protease increased at the beginning of senescence and was maintained at a high level, implicating this protease in proteolysis during the course of leaf senescence. Two proteases, proteasome beta subunit A1 and senescence-associated gene 12, were induced and continued to increase during the later phase of senescence, suggesting that these proteases are more specifically involved in the proteolysis processes occurring at the final stages of leaf senescence.


Asunto(s)
Brassica napus/efectos de los fármacos , Brassica napus/metabolismo , Nitratos/farmacología , Biomasa , Brassica napus/química , Brassica napus/crecimiento & desarrollo , Clorofila/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteómica , Trazadores Radiactivos
19.
Plants (Basel) ; 8(5)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121992

RESUMEN

To limit the environmental pollution associated with intensive nitrogen (N) fertilizer usage, alternative cultural practices must be considered for crops requiring high N inputs such as rapeseed. In this context, the effects of silicon (Si) supply on the agronomic performance of rapeseed cultivated under field conditions with two N fertilizer levels (60 and 160 kg ha-1) were studied. Results showed that Si supplied in the form of silicic acid (12 kg ha-1) has no effect on the agronomic performance of plants cultivated with the lower N input. In contrast, in plants fertilized with 160 kg N ha-1, Si supply promotes the preservation of green leaves (until the flowering stage) and at harvest stage, increases biomass, yield, and seed micronutrient concentrations (especially cobalt and iron). The agronomic indexes show that the increase in seed yield is related to a better uptake of N from the soil by Si-treated plants, but is not an improvement in N mobilization towards the seeds. This study showed that Si supply combined with high N inputs (160 kg ha-1) improves usage of N fertilizer and yield. The possibility that a Si supply could allow for a reduction in N input without altering the yield of rapeseed is discussed.

20.
Front Plant Sci ; 9: 516, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740460

RESUMEN

Silicon (Si) is the second most abundant element in soil and has several beneficial effects, especially in plants subjected to stress conditions. However, the effect of Si in preventing nitrogen (N) starvation in plants is poorly documented. The aim of this work was to study the effect of a short Si supply duration (7 days) on growth, N uptake, photosynthetic activity, and leaf senescence progression in rapeseed subjected (or not) to N starvation. Our results showed that after 1 week of Si supply, Si improves biomass and increases N uptake and root expression of a nitrate transporter gene. After 12 days of N starvation, compared to -Si plants, mature leaf from +Si plants showed a high chlorophyll content, a maintain of net photosynthetic activity, a decrease of oxidative stress markers [hydrogen peroxide (H2O2) and malondialdehyde (MDA)] and a significant delay in senescence. When N-deprived plants were resupplied with N, a greening again associated with an increase of photosynthetic activity was observed in mature leaves of plants pretreated with Si. Moreover, during the duration of N resupply, an increase of N uptake and nitrate transporter gene expression were observed in plants pretreated with Si. In conclusion, this study has shown a beneficial role of Si to alleviate damage associated with N starvation and more especially its role in delaying of leaf senescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA