Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 262: 119440, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-35842097

RESUMEN

The task-evoked positive BOLD response (PBR) to a unilateral visual hemi-field stimulation is often accompanied by robust and sustained contralateral as well as ipsilateral negative BOLD responses (NBRs) in the visual cortex. The signal characteristics and the neural and/or vascular mechanisms that underlie these two types of NBRs are not completely understood. In this paper, we investigated the properties of these two types of NBRs. We first demonstrated the linearity of both NBRs with respect to stimulus duration. Next, we showed that the hemodynamic response functions (HRFs) of the two NBRs were similar to each other, but significantly different from that of the PBR. Moreover, the subject-wise expressions of the two NBRs were tightly coupled to the degree that the correlation between the two NBRs was significantly higher than the correlation between each NBR and the PBR. However, the activation patterns of the two NBRs did not show a high level of interhemispheric spatial similarity, and the functional connectivity between them was not different than the interhemispheric functional connectivity between the NBRs and PBR. Finally, while attention did modulate both NBRs, the attention-related changes in their HRFs were similar. Our findings suggest that the two NBRs might be generated through common neural and/or vascular mechanisms involving distal/deep brain regions that project to the two hemispheres.


Asunto(s)
Mapeo Encefálico , Corteza Visual , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Estimulación Luminosa/métodos , Corteza Visual/diagnóstico por imagen
2.
Front Hum Neurosci ; 16: 877326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431841

RESUMEN

Diffusion MRI (dMRI) is widely used to investigate neuronal and structural development of brain. dMRI data is often contaminated with various types of artifacts. Hence, artifact type identification in dMRI volumes is an essential pre-processing step prior to carrying out any further analysis. Manual artifact identification amongst a large pool of dMRI data is a highly labor-intensive task. Previous attempts at automating this process are often limited to a binary classification ("poor" vs. "good" quality) of the dMRI volumes or focus on detecting a single type of artifact (e.g., motion, Eddy currents, etc.). In this work, we propose a deep learning-based automated multiclass artifact classifier for dMRI volumes. Our proposed framework operates in 2 steps. In the first step, the model predicts labels associated with 3D mutually exclusive collectively exhaustive (MECE) sub-volumes or "slabs" extracted from whole dMRI volumes. In the second step, through a voting process, the model outputs the artifact class present in the whole volume under investigation. We used two different datasets for training and evaluating our model. Specifically, we utilized 2,494 poor-quality dMRI volumes from the Adolescent Brain Cognitive Development (ABCD) and 4,226 from the Healthy Brain Network (HBN) dataset. Our results demonstrate accurate multiclass volume-level main artifact type prediction with 96.61 and 97.52% average accuracies on the ABCD and HBN test sets, respectively. Finally, in order to demonstrate the effectiveness of the proposed framework in dMRI pre-processing pipelines, we conducted a proof-of-concept dMRI analysis exploring the relationship between whole-brain fractional anisotropy (FA) and participant age, to test whether the use of our model improves the brain-age association.

3.
IEEE Trans Med Imaging ; 41(10): 2925-2940, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35560070

RESUMEN

An increased interest in longitudinal neurodevelopment during the first few years after birth has emerged in recent years. Noninvasive magnetic resonance imaging (MRI) can provide crucial information about the development of brain structures in the early months of life. Despite the success of MRI collections and analysis for adults, it remains a challenge for researchers to collect high-quality multimodal MRIs from developing infant brains because of their irregular sleep pattern, limited attention, inability to follow instructions to stay still during scanning. In addition, there are limited analytic approaches available. These challenges often lead to a significant reduction of usable MRI scans and pose a problem for modeling neurodevelopmental trajectories. Researchers have explored solving this problem by synthesizing realistic MRIs to replace corrupted ones. Among synthesis methods, the convolutional neural network-based (CNN-based) generative adversarial networks (GANs) have demonstrated promising performance. In this study, we introduced a novel 3D MRI synthesis framework- pyramid transformer network (PTNet3D)- which relies on attention mechanisms through transformer and performer layers. We conducted extensive experiments on high-resolution Developing Human Connectome Project (dHCP) and longitudinal Baby Connectome Project (BCP) datasets. Compared with CNN-based GANs, PTNet3D consistently shows superior synthesis accuracy and superior generalization on two independent, large-scale infant brain MRI datasets. Notably, we demonstrate that PTNet3D synthesized more realistic scans than CNN-based models when the input is from multi-age subjects. Potential applications of PTNet3D include synthesizing corrupted or missing images. By replacing corrupted scans with synthesized ones, we observed significant improvement in infant whole brain segmentation.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Adulto , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Endoscopía , Humanos , Lactante , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2756-2760, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891820

RESUMEN

Diffusion Tensor Imaging (DTI) is widely used to find brain biomarkers for various stages of brain structural and neuronal development. Processing DTI data requires a detailed Quality Assessment (QA) to detect artifactual volumes amongst a large pool of data. Since large cohorts of brain DTI data are often used in different studies, manual QA of such images is very labor-intensive. In this paper, a deep learning-based tool is developed for quick automatic QA of 3D raw diffusion MR images. We propose a 2-step framework to automate the process of binary (i.e., 'good' vs 'poor') quality classification of diffusion MR images. In the first step, using two separately trained 3D convolutional neural networks with different input sizes, quality labels for individual Regions of Interest (ROIs) sampled from whole DTI volumes are predicted. In the second step, two distinct novel voting systems are designed and fine-tuned to predict the quality label of whole brain DTI volumes using the individual ROI labels predicted in the previous step. Our results demonstrate the validity and practicality of our tool. Specifically, using a balanced dataset of 6,940 manually-labeled 3D DTI volumes from 85 unique subjects for training, validation, and testing, our model achieves 100% accuracy via one voting system, and 98% accuracy via another voting system on the same test set.


Asunto(s)
Imagen de Difusión Tensora , Redes Neurales de la Computación , Encéfalo/diagnóstico por imagen , Humanos , Imagenología Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA