Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Breast Cancer Res ; 17: 66, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25968050

RESUMEN

INTRODUCTION: Tumor cells can effectively be killed by heat, e.g. by using magnetic hyperthermia. The main challenge in the field, however, is the generation of therapeutic temperatures selectively in the whole tumor region. We aimed to improve magnetic hyperthermia of breast cancer by using innovative nanoparticles which display a high heating potential and are functionalized with a cell internalization and a chemotherapeutic agent to increase cell death. METHODS: The superparamagnetic iron oxide nanoparticles (MF66) were electrostatically functionalized with either Nucant multivalent pseudopeptide (N6L; MF66-N6L), doxorubicin (DOX; MF66-DOX) or both (MF66-N6LDOX). Their cytotoxic potential was assessed in a breast adenocarcinoma cell line MDA-MB-231. Therapeutic efficacy was analyzed on subcutaneous MDA-MB-231 tumor bearing female athymic nude mice. RESULTS: All nanoparticle variants showed an excellent heating potential around 500 W/g Fe in the alternating magnetic field (AMF, conditions: H=15.4 kA/m, f=435 kHz). We could show a gradual inter- and intracellular release of the ligands, and nanoparticle uptake in cells was increased by the N6L functionalization. MF66-DOX and MF66-N6LDOX in combination with hyperthermia were more cytotoxic to breast cancer cells than the respective free ligands. We observed a substantial tumor growth inhibition (to 40% of the initial tumor volume, complete tumor regression in many cases) after intratumoral injection of the nanoparticles in vivo. The proliferative activity of the remaining tumor tissue was distinctly reduced. CONCLUSION: The therapeutic effects of breast cancer magnetic hyperthermia could be strongly enhanced by the combination of MF66 functionalized with N6L and DOX and magnetic hyperthermia. Our approach combines two ways of tumor cell killing (magnetic hyperthermia and chemotherapy) and represents a straightforward strategy for translation into the clinical practice when injecting nanoparticles intratumorally.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Compuestos Férricos/química , Hipertermia Inducida/métodos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Animales , Apoptosis , Neoplasias de la Mama/diagnóstico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Femenino , Humanos , Hipertermia Inducida/efectos adversos , Nanopartículas del Metal/efectos adversos , Ratones , Ratones Desnudos , Microtomografía por Rayos X , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Pharm Res ; 31(12): 3274-88, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24890197

RESUMEN

PURPOSE: Tumor cells can be effectively inactivated by heating mediated by magnetic nanoparticles. However, optimized nanomaterials to supply thermal stress inside the tumor remain to be identified. The present study investigates the therapeutic effects of magnetic hyperthermia induced by superparamagnetic iron oxide nanoparticles on breast (MDA-MB-231) and pancreatic cancer (BxPC-3) xenografts in mice in vivo. METHODS: Superparamagnetic iron oxide nanoparticles, synthesized either via an aqueous (MF66; average core size 12 nm) or an organic route (OD15; average core size 15 nm) are analyzed in terms of their specific absorption rate (SAR), cell uptake and their effectivity in in vivo hyperthermia treatment. RESULTS: Exceptionally high SAR values ranging from 658 ± 53 W*gFe (-1) for OD15 up to 900 ± 22 W*gFe (-1) for MF66 were determined in an alternating magnetic field (AMF, H = 15.4 kA*m(-1) (19 mT), f = 435 kHz). Conversion of SAR values into system-independent intrinsic loss power (ILP, 6.4 ± 0.5 nH*m(2)*kg(-1) (OD15) and 8.7 ± 0.2 nH*m(2)*kg(-1) (MF66)) confirmed the markedly high heating potential compared to recently published data. Magnetic hyperthermia after intratumoral nanoparticle injection results in dramatically reduced tumor volume in both cancer models, although the applied temperature dosages measured as CEM43T90 (cumulative equivalent minutes at 43°C) are only between 1 and 24 min. Histological analysis of magnetic hyperthermia treated tumor tissue exhibit alterations in cell viability (apoptosis and necrosis) and show a decreased cell proliferation. CONCLUSIONS: Concluding, the studied magnetic nanoparticles lead to extensive cell death in human tumor xenografts and are considered suitable platforms for future hyperthermic studies.


Asunto(s)
Campos Electromagnéticos , Hipertermia Inducida , Neoplasias Experimentales/terapia , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Compuestos Férricos , Humanos , Antígeno Ki-67 , Ratones , Nanopartículas , Neoplasias Experimentales/sangre , Temperatura , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Biomed Mater Res A ; 106(11): 2910-2922, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30447103

RESUMEN

Increasing cell adhesion on implant surfaces is an issue of high biomedical importance. Early colonization with endogenous cells reduces the risk of bacterial contamination and enhances the integration of an implant into the diverse cellular tissues surrounding it. In vivo integration of implants is controlled by a complex spatial and temporal interplay of cytokines and adhesive molecules. The concept of a multi-biofunctionalized TiO2 surface for stimulating bone and soft tissue growth is presented here. All supramolecular architectures were built with a biotin-streptavidin coupling system. Biofunctionalization of TiO2 with immobilized FGF-2 and heparin could be shown to selectively increase the proliferation of fibroblasts while immobilized BMP-2 only stimulated the growth of osteoblasts. Furthermore, TiO2 surfaces biofunctionalized with either the BMP-2 or BMP-2/6 growth factor and the cell adhesion-enhancing protein fibronectin showed higher osteoblast adhesion than a TiO2 surface functionalized with only one of these proteins. In conclusion, the presented immobilization strategy is applicable in vivo for a selective surface coating of implants in both hard and connective tissue. The combined immobilization of different extracellular proteins on implants has the potential to further influence cell-specific reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2910-2922, 2018.


Asunto(s)
Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 6/química , Adhesión Celular , Proliferación Celular , Materiales Biocompatibles Revestidos/química , Factor 2 de Crecimiento de Fibroblastos/química , Titanio/química , Línea Celular , Fibroblastos/citología , Humanos , Proteínas Inmovilizadas/química , Modelos Moleculares , Osteoblastos/citología , Prótesis e Implantes , Propiedades de Superficie
4.
J Biomed Mater Res A ; 106(3): 758-768, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29055106

RESUMEN

Streptavidin is a 58 kDa tetrameric protein with the highest known affinity to biotin with a wide range of applications in bionanotechnology and molecular biology. Dissolved streptavidin is stable at a broad range of temperature, pH, proteolytic enzymes and exhibits low non-specific binding. In this study, a streptavidin monolayer was assembled directly on a biotinylated TiO2 -surface to investigate its stability against proteolytic digestion and its suppression of initial bacterial adsorption of Escherichia coli, Bacillus subtilis, and Streptococcus intermedius. In contrast to nonmodified TiO2 surfaces, streptavidin-coated substrates showed only a negligible non-specific protein adsorption at physiological protein concentrations as well as a significantly reduced bacterial adhesion. The antiadhesive properties were demonstrated to be the main reason for the suppression of bacterial adhesion, which makes this approach a promising option for future surface biofunctionalization applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 758-768, 2018.


Asunto(s)
Bacterias/crecimiento & desarrollo , Materiales Biocompatibles Revestidos/farmacología , Proteínas/química , Estreptavidina/química , Adsorción , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Biotinilación , Recuento de Colonia Microbiana , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Interacciones Hidrofóbicas e Hidrofílicas , Implantes Experimentales , Muramidasa/química , Proteolisis/efectos de los fármacos , Albúmina Sérica Bovina/química , Streptococcus/efectos de los fármacos , Streptococcus/crecimiento & desarrollo , Streptococcus/fisiología , Propiedades de Superficie , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA