Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 123(27): 5805-5814, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257892

RESUMEN

Recent high-resolution in situ mass spectrometry at comet 67P/Churyumov-Gerasimenko visited by European Space Agency's Rosetta spacecraft raised the question, if sublimating ammonium salts can unequivocally be detected in the cometary coma. In laboratory experiments with the twin model of the space instrument, two prototypic ammonium salts NH4B, namely, ammonium chloride (B = Cl-) and ammonium formate (B = HCOO-) (as well as methodologically relevant isotopologues), were allowed to sublimate in vacuum while mass spectra were collected. High-resolution electron-impact ionization mass spectrometry provides an outstanding experimental tool to investigate the complex physicochemical processes occurring during the sublimation of ammonium salts. Sublimation of ammonium chloride led to the observation of the ammonium cation NH4+ and the chloramide molecule NH2Cl in the neutral gas mode of the instrument. These observations could be jointly interpreted as indirect evidence for the existence of a neutral gaseous parent species (either as the molecular complex NH3···HB or the double-ionic species NH4+···B-). However, the qualitative fragmentation pattern we present for 13C15N-ammonium formate suggests an alternative route of NH4+ production within the ionization region of the instrument, namely, by protonation/hydrogenation. Besides NH4+, other species were observed that were formed in protonation/hydrogenation reactions. Moreover, together with the two major species from the decomposition of the salt, ammonia and formic acid, three minor species also contributed to the fragmentation pattern: HCN/HNC, HOCN/HNCO, and CH3NO. Like chloramide, formamide (CH3NO) also is a secondary species probably formed in a pseudo-intramolecular chemical reaction while ammonia and the respective acid are in a state of association. HCN/HNC and HOCN/HNCO are ternary products coming out of formamide decomposition reactions. We discuss our experimental findings, summarized in a tentative chemical reaction network, in light of the available theoretical literature and highlight their relevance for the interpretation of in situ measurements in space research.

2.
Nanomaterials (Basel) ; 10(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085559

RESUMEN

Low energy ion measurements in the vicinity of a comet have provided us with important information about the planet's evolution. The calibration of instruments for thermal ions in the laboratory plays a crucial role when analysing data from in-situ measurements in space. A new low energy ion source based on carbon nanotube electron emitters was developed for calibrating the ion-mode of mass spectrometers or other ion detectors. The electron field emission (FE) properties of carbon nanotubes (CNTs) for H2, He, Ar, O2, and CO2 gases were tested in the experiments. H2, He, Ar, and CO2 adsorbates could change the FE temporarily at pressures from10-6 Pa to10-4 Pa. The FE of CNT remains stable in Ar and increases in H2, but degrades in He, O2, and CO2. All gas adsorbates lead to temporary degradation after working for prolonged periods. The ion current of the ion source is measured by using a Faraday cup and the sensitivity is derived from this measurement. The ion currents for the different gases were around 10 pA (corresponding to 200 ions/cm3 s) and an energy of ~28 eV could be observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA