Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Public Health ; 12: 1387056, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638471

RESUMEN

Background: Previous physiology-driven pain studies focused on examining the presence or intensity of physical pain. However, people experience various types of pain, including social pain, which induces negative mood; emotional distress; and neural activities associated with physical pain. In particular, comparison of autonomic nervous system (ANS) responses between social and physical pain in healthy adults has not been well demonstrated. Methods: We explored the ANS responses induced by two types of pain-social pain, associated with a loss of social ties; and physical pain, caused by a pressure cuff-based on multimodal physiological signals. Seventy-three healthy individuals (46 women; mean age = 20.67 ± 3.27 years) participated. Behavioral responses were assessed to determine their sensitivity to pain stimuli. Electrocardiogram, electrodermal activity, photoplethysmogram, respiration, and finger temperature (FT) were measured, and 12 features were extracted from these signals. Results: Social pain induced increased heart rate (HR) and skin conductance (SC) and decreased blood volume pulse (BVP), pulse transit time (PTT), respiration rate (RR), and FT, suggesting a heterogeneous pattern of sympathetic-parasympathetic coactivation. Moreover, physical pain induced increased heart rate variability (HRV) and SC, decreased BVP and PTT, and resulted in no change in FT, indicating sympathetic-adrenal-medullary activation and peripheral vasoconstriction. Conclusion: These results suggest that changes in HR, HRV indices, RR, and FT can serve as markers for differentiating physiological responses to social and physical pain stimuli.


Asunto(s)
Sistema Nervioso Autónomo , Dolor , Adulto , Humanos , Femenino , Adolescente , Adulto Joven , Voluntarios Sanos , Sistema Nervioso Autónomo/fisiología , Emociones/fisiología , Electrocardiografía
2.
Biol Psychiatry ; 95(5): 465-472, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678539

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is characterized by depressed mood or loss of interest or pleasure. Generally, women are twice as likely as men to have depression. Taurine, a type of amino acid, plays critical roles in neuronal generation, differentiation, arborization, and formation of synaptic connections. Importantly, it enhances proliferation and synaptogenesis in the hippocampus. When injected into animals, taurine has an antidepressant effect. However, there is no in vivo evidence to show an association between taurine concentration in the human brain and the development of MDD. METHODS: Forty-one unmedicated young women with MDD (ages 18-29) and 43 healthy control participants matched for gender and age were recruited in South Korea. Taurine concentration was measured in the hippocampus, anterior cingulate cortex, and occipital cortex of the MDD and healthy control groups using proton magnetic resonance spectroscopy at 7T. Analysis of covariance was used to examine differences in taurine concentration, adjusting for age as a covariate. RESULTS: Taurine concentration in the hippocampus was lower (F1,75 = 5.729, p = .019, Δη2 = 0.073) for the MDD group (mean [SEM] = 0.91 [0.06] mM) than for the healthy control group (1.13 [0.06] mM). There was no significant difference in taurine concentration in the anterior cingulate cortex or occipital cortex between the two groups. CONCLUSIONS: This study demonstrates that a lower level of taurine concentration in the hippocampus may be a novel characteristic of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Masculino , Animales , Humanos , Femenino , Trastorno Depresivo Mayor/tratamiento farmacológico , Espectroscopía de Protones por Resonancia Magnética , Taurina/metabolismo , Taurina/uso terapéutico , Imagen por Resonancia Magnética , Hipocampo/metabolismo , Giro del Cíngulo/metabolismo
3.
Front Mol Neurosci ; 16: 1073963, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937048

RESUMEN

Studies on differences in brain structure and function according to sex are reported to contribute to differences in behavior and cognition. However, few studies have investigated brain structures or used tractography to investigate gender differences in pain sensitivity. The identification of tracts involved in sex-based structural differences that show pain sensitivity has remained elusive to date. Here, we attempted to demonstrate the sex differences in pain sensitivity and to clarify its relationship with brain structural connectivity. In this study, pain behavior test and brain diffusion tensor imaging (DTI) were performed in male and female rats and tractography was performed on the whole brain using fiber tracking software. We selected eight brain regions related to pain and performed a tractography analysis of these regions. Fractional anisotropy (FA) measurements using automated tractography revealed sex differences in the anterior cingulate cortex (ACC)-, prefrontal cortex (PFC)-, and ventral posterior thalamus-related brain connections. In addition, the results of the correlation analysis of pain sensitivity and DTI tractography showed differences in mean, axial, and radial diffusivities, as well as FA. This study revealed the potential of DTI for exploring circuits involved in pain sensitivity. The behavioral and functional relevance's of measures derived from DTI tractography is demonstrated by their relationship with pain sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA