Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240145

RESUMEN

Epithelial-to-mesenchymal transition (EMT) plays a critical role in the development and progression of lung cancer by promoting its invasiveness and metastasis. Using integrative analyses of the public lung cancer database, we found that the expression levels of the tight junction proteins, zonula occluden (ZO)-1 and ZO-2, were lower in lung cancer tissues, including both lung adenocarcinoma and lung squamous cell carcinoma than in normal lung tissues analyzed using The Cancer Genome Atlas (TCGA). Although the ectopic expression or knockdown of ZO-1 and ZO-2 did not affect the growth of lung cancer cells, they significantly regulated cell migration and invasion. When M0 macrophages were co-cultured with ZO-1 or ZO-2 knockdown Calu-1 cells, M2-like polarization was efficiently induced. Conversely, co-culture of M0 THP-1 cells with A549 cells stably expressing ZO-1 or ZO-2 significantly reduced M2 differentiation. We also identified G protein subunit alpha q (GNAQ) as a potential ZO-1- and ZO-2-specific activator through analysis of correlated genes with the TCGA lung cancer database. Our results suggest that the GNAQ-ZO-1/2 axis may play a tumor-suppressive role in lung cancer development and progression and highlight ZO-1 and ZO-2 as key EMT- and tumor microenvironment-suppressive proteins. These findings provide new insights for the development of targeted therapies for lung cancer.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Uniones Estrechas/metabolismo , Microambiente Tumoral/genética , Neoplasias Pulmonares/genética , Transición Epitelial-Mesenquimal/genética , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901700

RESUMEN

Cancer-associated fibroblasts (CAFs) contribute to tumor progression, and microRNAs (miRs) play an important role in regulating the tumor-promoting properties of CAFs. The objectives of this study were to clarify the specific miR expression profile in CAFs of hepatocellular carcinoma (HCC) and identify its target gene signatures. Small-RNA-sequencing data were generated from nine pairs of CAFs and para-cancer fibroblasts isolated from human HCC and para-tumor tissues, respectively. Bioinformatic analyses were performed to identify the HCC-CAF-specific miR expression profile and the target gene signatures of the deregulated miRs in CAFs. Clinical and immunological implications of the target gene signatures were evaluated in The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA_LIHC) database using Cox regression and TIMER analysis. The expressions of hsa-miR-101-3p and hsa-miR-490-3p were significantly downregulated in HCC-CAFs. Their expression in HCC tissue gradually decreased as HCC stage progressed in the clinical staging analysis. Bioinformatic network analysis using miRWalks, miRDB, and miRTarBase databases pointed to TGFBR1 as a common target gene of hsa-miR-101-3p and hsa-miR-490-3p. TGFBR1 expression was negatively correlated with miR-101-3p and miR-490-3p expression in HCC tissues and was also decreased by ectopic miR-101-3p and miR-490-3p expression. HCC patients with TGFBR1 overexpression and downregulated hsa-miR-101-3p and hsa-miR-490-3p demonstrated a significantly poorer prognosis in TCGA_LIHC. TGFBR1 expression was positively correlated with the infiltration of myeloid-derived suppressor cells, regulatory T cells, and M2 macrophages in a TIMER analysis. In conclusion, hsa-miR-101-3p and hsa-miR-490-3p were substantially downregulated miRs in CAFs of HCC, and their common target gene was TGFBR1. The downregulation of hsa-miR-101-3p and hsa-miR-490-3p, as well as high TGFBR1 expression, was associated with poor clinical outcome in HCC patients. In addition, TGFBR1 expression was correlated with the infiltration of immunosuppressive immune cells.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Fibroblastos Asociados al Cáncer/metabolismo , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
3.
Hepatology ; 70(4): 1262-1279, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30991448

RESUMEN

Histone deacetylase 6 (HDAC6) uniquely serves as a tumor suppressor in hepatocellular carcinogenesis, but the underlying mechanisms leading to tumor suppression are not fully understood. To identify comprehensive microRNAs (miRNAs) regulated by HDAC6 in hepatocellular carcinogenesis, differential miRNA expression analysis of HDAC6-transfected Hep3B cells was performed. Using integrative analyses of publicly available transcriptome data and miRNA target prediction, we selected five candidate miRNAs and, through in vitro functional validation, showed that let-7i-5p specifically suppressed thrombospondin-1 (TSP1) in hepatocellular carcinoma (HCC). Ectopic expression of antisense let-7i-5p (AS-let-7i-5p) inhibited in vitro tumorigenesis of HCC cells. In addition, treatments of partially purified TSP1 from culture cell media (ppTSP1) and recombinant TSP1 (rTSP1) exhibited similar effects with AS-let-7i-5p treatment on the same HCC cells, whereas TSP1 neutralizing antibody treatment significantly attenuated these effects. Notably, treatments of HDAC6 plasmid, AS-let-7i-5p, ppTSP1, and rTSP1 significantly suppressed in vitro angiogenesis and metastatic potential of HCC cells, but the co-treatment of TSP1 antibody specific to cluster of differentiation 47 (CD47) binding domain successfully blocked these effects in the same cells. Furthermore, we demonstrated that recovery of HDAC6 elicited let-7i-5p suppression to de-repress TSP1 expression; therefore, it occupied the CD47 receptor to block CD47-SIRPα-mediated anti-phagocytosis of macrophage in HCC. We also observed that HCC-derived exosomal let-7i-5p suppressed TSP1 of recipient hepatocyte cells. Treatments of HDAC6 plasmid, AS-let-7i-5p, and rTSP1 suppressed tumor incidence as well as tumor growth rates in a spontaneous mouse HCC model. Conclusion: Our findings suggest that the HDAC6-let-7i-5p-TSP1 regulatory pathway suppresses neoplastic and antiphagocytic behaviors of HCC by interacting with cell surface receptor CD47 in HCC and neighboring cells of tumor microenvironment, providing a therapeutic target for the treatment of liver malignancy and metastasis.


Asunto(s)
Antígeno CD47/genética , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica/genética , Histona Desacetilasa 6/genética , Neoplasias Hepáticas/genética , Trombospondina 1/metabolismo , Análisis de Varianza , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , Fagocitosis/genética , Distribución Aleatoria , Microambiente Tumoral/genética
4.
Eur Radiol ; 30(8): 4182-4192, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32189053

RESUMEN

OBJECTIVES: Magnetic resonance elastography (MRE) is a non-invasive tool for measuring liver stiffness (LS) with high diagnostic accuracy. This study investigated whether quantified LS by MRE could predict early recurrence of patients with hepatocellular carcinoma (HCC) within the Milan criteria. METHODS: A prospectively collected cohort, which included the HCC patients who underwent MRE before treatment (an HCC-MRE cohort), was analyzed. In the HCC-MRE cohort, only patients under the Milan criteria, who underwent hepatic resection, radiofrequency ablation (RFA), or transarterial chemoembolization (TACE), were reviewed. We investigated whether LS assessed by MRE was an independent predictor of early recurrence using Cox regressions and Kaplan-Meier analyses. RESULTS: A total of 192 HCC patients under the Milan criteria who underwent hepatic resection (n = 96), RFA (n = 23), or TACE (n = 73) were included. Higher LS ratings (kPa; hazard ratio [HR] = 1.12; 95% confidence interval [CI] = 1.01-1.25; p = 0.040) emerged as an independent risk factor for early tumor recurrence. In the subgroup analysis, higher LS ratings were associated with higher risks of early HCC recurrence in both the resection/RFA group (> 4.5 kPa; HR = 2.95; 95% CI = 1.26-6.94; p = 0.013) and the TACE group (> 6 kPa; HR = 2.94; 95% CI = 1.27-6.83; p = 0.012). CONCLUSION: LS assessed by MRE was an independent predictor of early recurrence among HCC patients under the Milan criteria after achieving a complete response. KEY POINTS: • Liver parenchymal stiffness measured by MRE predicts early recurrence of treated HCC under Milan criteria. • A liver stiffness > 5.5 kPa was associated with worse recurrence-free survival. • Patients with high pre-treatment LS may benefit from stringent follow-up.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad , Neoplasias Hepáticas/diagnóstico por imagen , Recurrencia Local de Neoplasia/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Ablación por Catéter , Quimioembolización Terapéutica/efectos adversos , Femenino , Hepatectomía , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo , Resultado del Tratamiento
5.
Hepatology ; 67(4): 1360-1377, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29059470

RESUMEN

An accurate tool enabling early diagnosis of hepatocellular carcinoma (HCC) is clinically important, given that early detection of HCC markedly improves survival. We aimed to investigate the molecular markers underlying early progression of HCC that can be detected in precancerous lesions. We designed a gene selection strategy to identify potential driver genes by integrative analysis of transcriptome and clinicopathological data of human multistage HCC tissues, including precancerous lesions, low- and high-grade dysplastic nodules. The gene selection process was guided by detecting the selected molecules in both HCC and precancerous lesion. Using various computational approaches, we selected 10 gene elements as a candidate and, through immunohistochemical staining, showed that barrier to autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3), and splicing factor 3b subunit 4 (SF3B4) are HCC decision markers with superior capability to diagnose early-stage HCC in a large cohort of HCC patients, as compared to the currently popular trio of HCC diagnostic markers: glypican 3, glutamine synthetase, and heat-shock protein 70. Targeted inactivation of BANF1, PLOD3, and SF3B4 inhibits in vitro and in vivo liver tumorigenesis by selectively modulating epithelial-mesenchymal transition and cell-cycle proteins. Treatment of nanoparticles containing small-interfering RNAs of the three genes suppressed liver tumor incidence as well as tumor growth rates in a spontaneous mouse HCC model. We also demonstrated that SF3B4 overexpression triggers SF3b complex to splice tumor suppressor KLF4 transcript to nonfunctional skipped exon transcripts. This contributes to malignant transformation and growth of hepatocyte through transcriptional inactivation of p27Kip1 and simultaneously activation of Slug genes. CONCLUSION: The findings suggest molecular markers of BANF1, PLOD3, and SF3B4 indicating early-stage HCC in precancerous lesion, and also suggest drivers for understanding the development of hepatocarcinogenesis. (Hepatology 2018;67:1360-1377).


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Factores de Empalme de ARN/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Western Blotting , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/patología , Humanos , Inmunohistoquímica , Factor 4 Similar a Kruppel , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/patología , Ratones , Ratas , Análisis de Matrices Tisulares/métodos
6.
J Pathol ; 244(1): 107-119, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28991363

RESUMEN

MicroRNAs (miRNAs) engage in complex interactions with the machinery that controls the transcriptome and concurrently target multiple mRNAs. Here, we demonstrate that microRNA-495-3p (miR-495-3p) functions as a potent tumor suppressor by governing ten oncogenic epigenetic modifiers (EMs) in gastric carcinogenesis. From the large cohort transcriptome datasets of gastric cancer (GC) patients available from The Cancer Genome Atlas (TCGA) and the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), we were able to recapitulate 15 EMs as significantly overexpressed in GC among the 51 EMs that were previously reported to be involved in cancer progression. Computational target prediction yielded miR-495-3p, which targets as many as ten of the 15 candidate oncogenic EMs. Ectopic expression of miRNA mimics in GC cells caused miR-495-3p to suppress ten EMs, and inhibited tumor cell growth and proliferation via caspase-dependent and caspase-independent cell death processing. In addition, in vitro metastasis assays showed that miR-495-3p plays a role in the metastatic behavior of GC cells by regulating SLUG, vimentin, and N-cadherin. Furthermore, treatment of GC cells with 5-aza-2'-deoxcytidine restored miR-495-3p expression; sequence analysis revealed hypermethylation of the miR-495-3p promoter region in GC cells. A negative regulatory loop is proposed, whereby DNMT1, among ten oncogenic EMs, regulates miR-495-3p expression via hypermethylation of the miR-495-3p promoter. Our findings suggest that the functional loss or suppression of miR-495-3p triggers overexpression of multiple oncogenic EMs, and thereby contributes to malignant transformation and growth of gastric epithelial cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Epigenómica , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias Gástricas/patología , Animales , Cadherinas/metabolismo , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica , Metilación de ADN , Genes Reporteros , Genes Supresores de Tumor , Humanos , Masculino , Ratones , Estómago/patología , Neoplasias Gástricas/genética
7.
Gastroenterology ; 153(5): 1378-1391.e6, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28734833

RESUMEN

BACKGROUND & AIMS: Transforming growth factor beta (TGF-ß) suppresses early stages of tumorigenesis, but also contributes to migration and metastasis of cancer cells. A large number of human tumors contain mutations that inactivate its receptors, or downstream proteins such as Smad transcription factors, indicating that the TGF-ß signaling pathway prevents tumor growth. We investigated the effects of TGF-ß inhibition on liver tumorigenesis in mice. METHODS: C57BL/6 mice received hydrodynamic tail-vein injections of transposons encoding HRASG12V and a short hairpin RNA (shRNA) to down-regulate p53, or those encoding HRASG12V and MYC, or those encoding HRASG12V and TAZS89A, to induce liver tumor formation; mice were also given injections of transposons encoding SMAD7 or shRNA against SMAD2, SMAD3, SMAD4, or SNAI1 (Snail), with or without ectopic expression of Snail. Survival times were compared, and livers were weighted and examined for tumors. Liver tumor tissues were analyzed by quantitative reverse-transcription PCR, RNA sequencing, immunoblots, and immunohistochemistry. We analyzed gene expression levels in human hepatocellular carcinoma samples deposited in The Cancer Genome Atlas. A cell proliferation assay was performed using human liver cancer cell lines (HepG2 and Huh7) stably expressing Snail or shRNA against Snail. RESULTS: TGF-ß inhibition via overexpression of SMAD7 (or knockdown of SMAD2, SMAD3, or SMAD4) consistently reduced formation and growth of liver tumors in mice that expressed activated RAS plus shRNA against p53, or in mice that expressed activated RAS and TAZ. TGF-ß signaling activated transcription of the Snail gene in liver tumors induced by HRASG12V and shRNA against p53, and by activated RAS and TAZ. Knockdown of Snail reduced liver tumor formation in both tumor models. Ectopic expression of Snail restored liver tumorigenesis suppressed by disruption of TGF-ß signaling. In human hepatocellular carcinoma, Snail expression correlated with TGF-ß activation. Ectopic expression of Snail increased cellular proliferation, whereas Snail knockdown led to reduced proliferation in human hepatocellular carcinoma cells. CONCLUSIONS: In analyses of transgenic mice, we found TGF-ß signaling to be required for formation of liver tumors upon expression of activated RAS and shRNA down-regulating p53, and upon expression of activated RAS and TAZ. Snail is the TGF-ß target that is required for hepatic tumorigenesis in these models.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Transformación Celular Neoplásica/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Hígado/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Regulación Neoplásica de la Expresión Génica , Genes myc , Genes ras , Predisposición Genética a la Enfermedad , Células Hep G2 , Humanos , Hígado/patología , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/deficiencia , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Tiempo , Transfección , Factor de Crecimiento Transformador beta/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba
8.
J Hepatol ; 64(3): 618-27, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26471504

RESUMEN

BACKGROUND & AIMS: Liver fibrosis is an increasing health concern worldwide and a major risk factor for hepatocellular carcinoma (HCC). Although the involvement of Hedgehog signaling in hepatic fibrosis has been known for some time, the causative role of activated Hedgehog signaling in liver fibrosis has not been verified in vivo. METHODS: Using hydrodynamics-based transfection, a transgenic mouse model has been developed that expresses Sonic Hedgehog (SHH), a ligand for Hedgehog signaling, in the liver. Levels of hepatic fibrosis and fibrosis-related gene expression were assessed in the model. Hepatic expression of SHH was induced in a murine model for hepatocellular adenoma (HCA) and tumor development was subsequently investigated. RESULTS: The transgenic mice revealed SHH expression in 2-5% of hepatocytes. Secreted SHH activated Hedgehog signaling in numerous cells of various types in the tissues. Hepatic expression of SHH led to fibrosis, activation of hepatic stellate cells, and an upregulation of various fibrogenic genes. Liver injury and hepatocyte apoptosis were observed in SHH mice. Persistent expression of SHH for up to 13months failed to induce tumors in the liver; however, it promoted liver tumor development induced by other oncogenes. By employing a HCA model induced by P53(R172H) and KRAS(G12D), we found that the SHH expression promoted the transition from HCA to HCC. CONCLUSIONS: SHH expression in the liver induces liver fibrosis with concurrent activation of hepatic stellate cells and fibrogenic genes. It can also enhance hepatocarcinogenesis induced by other oncogenes.


Asunto(s)
Proteínas Hedgehog/fisiología , Cirrosis Hepática Experimental/etiología , Neoplasias Hepáticas Experimentales/etiología , Animales , Apoptosis , Transición Epitelial-Mesenquimal , Proteínas Hedgehog/análisis , Cirrosis Hepática Experimental/patología , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal , Factor de Crecimiento Transformador beta1/fisiología
9.
J Hepatol ; 63(2): 408-19, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25817558

RESUMEN

BACKGROUND & AIMS: Most common reason behind changes in histone deacetylase (HDAC) function is its overexpression in cancer. However, among HDACs in liver cancer, HDAC6 is uniquely endowed with a tumor suppressor, but the mechanism underlying HDAC6 inactivation has yet to be uncovered. METHODS: Microarray profiling and target prediction programs were used to identify miRNAs targeting HDAC6. A series of inhibitors, activators and siRNAs was introduced to validate regulatory mechanisms for microRNA-221-3p (miR-221) governing HDAC6 in hepatocarcinogenesis. RESULTS: Comprehensive miRNA profiling analysis identified seven putative endogenous miRNAs that are significantly upregulated in hepatocellular carcinoma (HCC). While miR-221 was identified as a suppressor of HDAC6 by ectopic expression of miRNA mimics in Dicer knockdown cells, targeted-disruption of miR-221 repressed cancer cell growth through derepressing HDAC6 expression. Suppression of HDAC6 via miR-221 was induced by JNK/c-Jun signaling in liver cancer cells but not in normal hepatic cells. Additionally, cytokine-induced NF-κBp65 independently regulated miR-221, thereby suppressing HDAC6 expression in HCC cells. HCC tissues derived from chemical-induced rat and H-ras12V transgenic mice liver cancer models validated that JNK/c-Jun activation and NF-κBp65 nuclear translocation are essential for the transcription of miR-221 leading to repression of HDAC6 in HCC. CONCLUSIONS: Our findings suggest that the functional loss or suppression of the tumor suppressor HDAC6 is caused by induction of miR-221 through coordinated JNK/c-Jun- and NF-κB-signaling pathways during liver tumorigenesis, providing a novel target for the molecular treatment of liver malignancies.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/genética , Neoplasias Hepáticas Experimentales/genética , MicroARNs/genética , ARN Neoplásico/genética , Animales , Progresión de la Enfermedad , Histona Desacetilasa 6 , Histona Desacetilasas/biosíntesis , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones Transgénicos , MicroARNs/biosíntesis , Reacción en Cadena de la Polimerasa , Ratas
10.
J Appl Toxicol ; 35(2): 152-64, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25231249

RESUMEN

Drug-induced liver injury (DILI) is a major safety concern during drug development and remains one of the main reasons for withdrawal of drugs from the market. Although it is crucial to develop methods that will detect potential hepatotoxicity of drug candidates as early and as quickly as possible, there is still a lack of sensitive and specific biomarkers for DILI that consequently leads to a scarcity of reliable hepatotoxic data. Hence, in this study, we assessed characteristic molecular signatures in rat liver treated with drugs (pyrazinamide, ranitidine, enalapril, carbamazepine and chlorpromazine) that are known to cause DILI in humans. Unsupervised hierarchical clustering analysis of transcriptome changes induced by DILI-causing drugs resulted in three different subclusters on dendrogram, i.e., hepatocellular, cholestatic and mixed type of DILI at early time points (2 days), and multiclassification analysis suggested 31 genes as discernible markers for each DILI pattern. Further analysis for characteristic molecular signature of each DILI pattern provided a molecular basis for different modes of DILI action. A proteomics study of the same rat livers was used to confirm the results, and the two sets of data showed 60 matching classifiers. In conclusion, the data of different DILI-causing drug treatments from genomic analysis in a rat model suggest that DILI-specific molecular signatures can discriminate different patterns of DILI at an early exposure time point, and that they provide useful information for mechanistic studies that may lead to a better understanding of the molecular basis of DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Animales , Biomarcadores/análisis , Biomarcadores/sangre , Carbamazepina/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Clorpromazina/toxicidad , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electroforesis en Gel Bidimensional , Enalapril/toxicidad , Expresión Génica/efectos de los fármacos , Hígado/química , Hígado/efectos de los fármacos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteómica , Pirazinamida/toxicidad , Ranitidina/toxicidad , Ratas , Ratas Sprague-Dawley , Transcriptoma/efectos de los fármacos
11.
Hepatology ; 57(3): 1055-67, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23079745

RESUMEN

UNLABELLED: Sirtuins are nicotinamide adenine dinucleotide oxidized form (NAD(+) )-dependent deacetylases and function in cellular metabolism, stress resistance, and aging. For sirtuin7 (SIRT7), a role in ribosomal gene transcription is proposed, but its function in cancer has been unclear. In this study we show that SIRT7 expression was up-regulated in a large cohort of human hepatocellular carcinoma (HCC) patients. SIRT7 knockdown influenced the cell cycle and caused a significant increase of liver cancer cells to remain in the G1 /S phase and to suppress growth. This treatment restored p21(WAF1/Cip1) , induced Beclin-1, and repressed cyclin D1. In addition, sustained suppression of SIRT7 reduced the in vivo tumor growth rate in a mouse xenograft model. To explore mechanisms in SIRT7 regulation, microRNA (miRNA) profiling was carried out. This identified five significantly down-regulated miRNAs in HCC. Bioinformatics analysis of target sites and ectopic expression in HCC cells showed that miR-125a-5p and miR-125b suppressed SIRT7 and cyclin D1 expression and induced p21(WAF1/Cip1) -dependent G1 cell cycle arrest. Furthermore, treatment of HCC cells with 5-aza-2'-deoxycytidine or ectopic expression of wildtype but not mutated p53 restored miR-125a-5p and miR-125b expression and inhibited tumor cell growth, suggesting their regulation by promoter methylation and p53 activity. To show the clinical significance of these findings, mutations in the DNA binding domain of p53 and promoter methylation of miR-125b were investigated. Four out of nine patients with induced SIRT7 carried mutations in the p53 gene and one patient showed hypermethylation of the miR-125b promoter region. CONCLUSION: Our findings suggest the oncogenic potential of SIRT7 in hepatocarcinogenesis. A regulatory loop is proposed whereby SIRT7 inhibits transcriptional activation of p21(WAF1/Cip1) by way of repression of miR-125a-5p and miR-125b. This makes SIRT7 a promising target in cancer therapy. (HEPATOLOGY 2013).


Asunto(s)
Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Sirtuinas/genética , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Terapia Genética/métodos , Genómica , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Desnudos , ARN Mensajero/metabolismo , Sirtuinas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Clin Mol Hepatol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486508

RESUMEN

Background/Aims: Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. Despite identification of several biomarkers for HCC diagnosis, challenges such as low sensitivity and intratumoral heterogeneity have impeded early detection, highlighting the need for etiology-specific blood biomarkers. Methods: We generated whole-transcriptome sequencing (WTS) and targeted proteome data from buffy coat and plasma samples from HCC patients. By integrating etiological information on viral infection, we investigated the etiology-specific gene expression landscape at the blood level. Validation of differentially expressed genes (DEGs) was performed using publicly available RNA-seq datasets and qRT‒PCR with AUC analyses. Results: Differential expression analyses with multiomics data revealed distinct gene expression profiles between HBV-associated HCC and nonviral HCC, indicating the presence of etiology-specific blood biomarkers. The identified DEGs were validated across multiple independent datasets, underscoring their utility as biomarkers. Additionally, single-cell RNA-seq analysis of HCC confirmed differences in DEG expression across distinct immune cell types. Conclusions: Our buffy coat WTS data and plasma proteome data may serve as reliable sources for identifying etiology-specific blood biomarkers of HCC and might contribute to discovery of therapeutic targets for HCC across different etiologies.

13.
Cancers (Basel) ; 16(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38254739

RESUMEN

We aimed to evaluate the survival benefits of coadministering statins and multityrosine kinase inhibitors (TKIs) in patients with advanced hepatocellular carcinoma (HCC). Data from the Health Insurance Review and Assessment Service in Korea (2010-2020) were utilized. Statin use (≥28 cumulative defined daily doses) was analyzed, with 1534 statin users matched to 6136 non-users (1:4 ratio) using propensity scores. Primary and secondary outcomes were overall survival (OS) and progression-free survival (PFS). Statin use significantly improved OS (hazard ratio [HR] 0.77, 95% confidence interval [CI] 0.72-0.82, p < 0.001) and PFS (HR 0.78, 95% CI 0.74-0.84, p < 0.001). Continuous or post-TKI statin users had better OS, while discontinuation after TKI use led to poorer OS. Both lipophilic and hydrophilic statins improved OS and PFS, particularly with ≥730 cumulative defined daily doses. In conclusion, combining statins and TKIs in patients with advanced HCC yielded significant survival benefits, influenced by statin dosage and duration. Continuous statin administration post-TKI treatment is crucial for improving outcomes in patients with HCC.

14.
Hepatology ; 56(2): 644-57, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22392728

RESUMEN

UNLABELLED: Ubiquitin-binding histone deacetylase 6 (HDAC6) is uniquely endowed with tubulin deacetylase activity and plays an important role in the clearance of misfolded protein by autophagy. In cancer, HDAC6 has become a target for drug development due to its major contribution to oncogenic cell transformation. In the present study we show that HDAC6 expression was down-regulated in a large cohort of human hepatocellular carcinoma (HCC) patients, and that low expression of HDAC6 was significantly associated with poor prognosis of HCC patients in 5-year overall, disease-free, and recurrence-free survival. Notably, we observed that ectopic overexpression of HDAC6 suppressed tumor cell growth and proliferation in various liver cancer cells, and elicited increased LC3B-II conversion and autophagic vacuole formation without causing apoptotic cell death or cell cycle inhibition. In addition, the sustained overexpression of HDAC6 reduced the in vivo tumor growth rate in a mouse xenograft model. It was also found that HDAC6 mediated autophagic cell death by way of Beclin 1 and activation of the LC3-II pathway in liver cancer cells, and that HDAC6 overexpression activated c-Jun NH2-terminal kinase (JNK) and increased the phosphorylation of c-Jun. In contrast, the induction of Beclin 1 expression was blocked by SP600125 (a specific inhibitor of JNK) or by small interfering RNA directed against HDAC6. CONCLUSION: Our findings suggest that loss of HDAC6 expression in human HCCs and tumor suppression by HDAC6 occur by way of activation of caspase-independent autophagic cell death through the JNK/Beclin 1 pathway in liver cancer and, thus, that a novel tumor suppressor function mechanism involving HDAC6 may be amenable to nonepigenetic regulation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Carcinoma Hepatocelular , Histona Desacetilasas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Hepáticas , Proteínas de la Membrana/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Beclina-1 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Genes Supresores de Tumor/fisiología , Células Hep G2 , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Pronóstico , ARN Interferente Pequeño/genética , Trasplante Heterólogo
15.
Biomarkers ; 18(8): 706-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24144218

RESUMEN

OBJECTIVE: Investigation on whether the characteristic molecular signatures can discriminate individual volatile organic compounds (VOCs) and provide predictive markers for the detection of VOC exposure. METHODS: Transcriptomic analysis of liver tissues was performed 48 h after the single oral administration of three VOCs doses at LD25 or LD5 values, to Sprague-Dawley. RESULTS: Combination analysis of different multi-classifications suggested that 145 genes predicted VOC exposure. Additionally, Gene Set Enrichment Analysis of genes deregulated by VOCs revealed that T cell prolymphatic leukemia signaling was inactivated in all VOCs. CONCLUSIONS: These molecular markers could be widely implemented to assess and predict environmental exposure to VOCs.


Asunto(s)
Hígado/efectos de los fármacos , Transcriptoma , Compuestos Orgánicos Volátiles/toxicidad , Animales , Hígado/química , Modelos Biológicos , Ratas , Ratas Sprague-Dawley , Compuestos Orgánicos Volátiles/análisis
16.
Cells ; 12(18)2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37759495

RESUMEN

With recent advancements in biological research, long non-coding RNAs (lncRNAs) with lengths exceeding 200 nucleotides have emerged as pivotal regulators of gene expression and cellular phenotypic modulation. Despite initial skepticism due to their low sequence conservation and expression levels, their significance in various biological processes has become increasingly apparent. We provided an overview of lncRNAs and discussed their defining features and modes of operation. We then explored their crucial function in the hepatocarcinogenesis process, elucidating their complex involvement in hepatocellular carcinoma (HCC). The influential role of lncRNAs within the HCC tumor microenvironment is emphasized, illustrating their potential as key modulators of disease dynamics. We also investigated the significant influence of N6-methyladenosine (m6A) modification on lncRNA function in HCC, enhancing our understanding of both their roles and their upstream regulators. Additionally, the potential of lncRNAs as promising biomarkers was discussed in liver cancer diagnosis, suggesting a novel avenue for future research and clinical application. Finally, our work underscored the dual potential of lncRNAs as both contributors to HCC pathogenesis and innovative tools for its diagnosis. Existing challenges and prospective trajectories in lncRNA research are also discussed, emphasizing their potential in advancing liver cancer research.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/genética , ARN Largo no Codificante/genética , Neoplasias Hepáticas/genética , Estudios Prospectivos , Biomarcadores , Microambiente Tumoral/genética
17.
Cancers (Basel) ; 15(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37627184

RESUMEN

HCC remains a lethal cancer type, with early detection being critical for improved patient outcomes. This study introduces a comprehensive methodological approach to identify the ITGA6 gene as a potential blood marker for early HCC (eHCC) detection. We initially analyzed the GSE114564 dataset encompassing various stages of liver disease, identifying 972 differentially expressed genes in HCC. A refined analysis yielded 59 genes specifically differentially expressed in early HCC, including ITGA6. Subsequent validation in multiple datasets confirmed the consistent upregulation of ITGA6 in HCC. In addition, when analyzing progression-free survival (PFS) within the entire patient cohort and overall survival (OS) specifically among patients classified as tumor grade G1, the group of patients characterized by high expression levels of ITGA6 displayed an elevated risk ratio in relation to prognosis. Further analyses demonstrated the predominant expression of ITGA6 in TECs and its enrichment in angiogenesis-related pathways. Additionally, positive correlations were found between ITGA6 expression and pro-tumorigenic immune cells, but not with anti-tumorigenic immune cells. Our study elucidates the potential of ITGA6 as a blood-based marker for HCC early detection and diagnosis and its complex interplay with the tumor microenvironment. Further research may lead to novel strategies for HCC management and patient care.

18.
J Exp Clin Cancer Res ; 42(1): 288, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37899451

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) accounts for a majority of primary liver cancer cases and related deaths. The purpose of this study was to assess the diagnostic value of splicing factor 3b subunit 4 (SF3B4) as a novel non-invasive biomarker for HCC and determine the association between SF3B4 expression and immune cell infiltration. METHODS: An enzyme-linked immunosorbent assay (ELISA) was used to detect SF3B4 levels in plasma samples obtained from healthy controls (HCs) and patients with chronic hepatitis, liver cirrhosis, and HCC. The expression levels of autoantibodies that detect SF3B4 in the plasma samples of each group of patients were measured. Small extracellular vesicles (EVs) were isolated from patient sera, and the expression levels of EV-SF3B4 were measured using quantitative reverse transcription PCR. RESULTS: ELISA results confirmed that the expression levels of SF3B4 proteins and autoantibodies in the plasma of patients with HCC were higher than those in HCs. However, their diagnostic performance was not better than that of alpha-fetoprotein (AFP). The mRNA expression of SF3B4 in serum EV increased but not in the buffy coat or serum of patients with HCC. Serum EV-SF3B4 displayed better diagnostic power than AFP for all stages of HCC (AUC = 0.968 vs. 0.816), including early-stage HCC (AUC = 0.960 vs. 0.842), and this was consistent in the external cohort. Single-cell RNA sequencing indicated that SF3B4 expression was correlated with myeloid-derived suppressor cells. The Tumor Immune Estimation Resource database reconfirmed the correlation between SF3B4 expression and immune cell infiltration in HCC. CONCLUSIONS: SF3B4 may be associated with tumor immune infiltration in HCC, and EV-SF3B4 shows potential as a novel non-invasive diagnostic biomarker of HCC.


Asunto(s)
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , alfa-Fetoproteínas/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Biomarcadores de Tumor/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Autoanticuerpos/metabolismo
19.
Cancer Commun (Lond) ; 43(4): 455-479, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36919193

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs) play an important role in the induction of chemo-resistance. This study aimed to clarify the mechanism underlying CAF-mediated resistance to two tyrosine kinase inhibitors (TKIs), sorafenib and lenvatinib, and to identify a novel therapeutic target for overcoming TKI resistance in hepatocellular carcinoma (HCC). METHODS: We performed a systematic integrative analysis of publicly available gene expression datasets and whole-transcriptome sequencing data from 9 pairs of CAFs and para-cancer fibroblasts isolated from human HCC and para-tumor tissues, respectively, to identify key molecules that might induce resistance to TKIs. We then performed in vitro and in vivo experiments to validate selected targets and related mechanisms. The associations of plasma secreted phosphoprotein 1 (SPP1) expression levels before sorafenib/lenvatinib treatment with progression-free survival (PFS) and overall survival (OS) of 54 patients with advanced HCC were evaluated using Kaplan-Meier and Cox regression analysis. RESULTS: Bioinformatic analysis identified CAF-derived SPP1 as a candidate molecule driving TKI resistance. SPP1 inhibitors reversed CAF-induced TKI resistance in vitro and in vivo. CAF-derived SPP1 activated rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) through the integrin-protein kinase C-alpha (PKCα) signaling pathway and promoted epithelial-to-mesenchymal transition (EMT). A high plasma SPP1 level before TKI treatment was identified as an independent predictor of poor PFS (P = 0.026) and OS (P = 0.047) in patients with advanced HCC after TKI treatment. CONCLUSIONS: CAF-derived SPP1 enhances TKI resistance in HCC via bypass activation of oncogenic signals and EMT promotion. Its inhibition represents a promising therapeutic strategy against TKI resistance in HCC. Moreover, plasma SPP1 level before TKI treatment represents a potential biomarker for treatment response prediction.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Fosfatidilinositol 3-Quinasas , Osteopontina/uso terapéutico , Neoplasias Hepáticas/patología
20.
J Cell Biochem ; 113(2): 685-94, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21976114

RESUMEN

Implantation of the blastocyst into the maternal endometrium is mediated by a population of well-differentiated primary cells of the placenta known as trophoblasts, which grow in an invasive and destructive fashion similar to tumor cells. Interactions between the endometrium and trophoblasts are regulated by a coordinated interplay of extracellular matrix (ECM) proteins secreted by the invading extravillous trophoblasts. Integrins act as adhesion receptors and mediate both cell-ECM and cell-cell interactions. However, the correlation between integrin expression and trophoblast invasion under hypoxia is unclear. Here, we analyzed the expression of integrins in HTR-8/SVneo trophoblast cells exposed to hypoxic conditions in order to demonstrate an association between invasion activity and integrin expression in trophoblasts. Trophoblasts were examined by microarray analysis, RT-PCR, western blotting, and zymography after 1% hypoxic treatment, and cell invasion was estimated. The dynamic expression of integrins and human matrix metalloproteinases (MMPs) was observed under hypoxic conditions. The invasiveness of trophoblasts cultured under 1% hypoxic conditions was significantly greater than that of trophoblasts cultured under normoxic conditions through alterations in MMP-2 and -9 (P < 0.05). Notably, integrin α4 expression during early hypoxia was negatively regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) expression in trophoblasts. The downregulation of integrin α4 expression by siRNA treatment controlled trophoblast invasion activity (P < 0.05). Taken together, we suggest that dynamic changes in integrins, including those in integrin α4 expression by hypoxia, play a regulatory role in trophoblast invasion. These findings expand our understanding of the potential roles of integrin α4 in implantation.


Asunto(s)
Implantación del Embrión , Regulación del Desarrollo de la Expresión Génica , Expresión Génica , Integrina alfa4/metabolismo , Trofoblastos/metabolismo , Hipoxia de la Célula , Línea Celular , Movimiento Celular , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Integrina alfa4/genética , Integrinas/genética , Integrinas/metabolismo , Redes y Vías Metabólicas , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA