Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(7): E932-41, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26831068

RESUMEN

Dysfunction of pacemaker activity in the sinoatrial node (SAN) underlies "sick sinus" syndrome (SSS), a common clinical condition characterized by abnormally low heart rate (bradycardia). If untreated, SSS carries potentially life-threatening symptoms, such as syncope and end-stage organ hypoperfusion. The only currently available therapy for SSS consists of electronic pacemaker implantation. Mice lacking L-type Cav1.3 Ca(2+) channels (Cav1.3(-/-)) recapitulate several symptoms of SSS in humans, including bradycardia and atrioventricular (AV) dysfunction (heart block). Here, we tested whether genetic ablation or pharmacological inhibition of the muscarinic-gated K(+) channel (IKACh) could rescue SSS and heart block in Cav1.3(-/-) mice. We found that genetic inactivation of IKACh abolished SSS symptoms in Cav1.3(-/-) mice without reducing the relative degree of heart rate regulation. Rescuing of SAN and AV dysfunction could be obtained also by pharmacological inhibition of IKACh either in Cav1.3(-/-) mice or following selective inhibition of Cav1.3-mediated L-type Ca(2+) (ICa,L) current in vivo. Ablation of IKACh prevented dysfunction of SAN pacemaker activity by allowing net inward current to flow during the diastolic depolarization phase under cholinergic activation. Our data suggest that patients affected by SSS and heart block may benefit from IKACh suppression achieved by gene therapy or selective pharmacological inhibition.


Asunto(s)
Canales de Calcio Tipo L/efectos de los fármacos , Proteínas de Unión al GTP/fisiología , Bloqueo Cardíaco/tratamiento farmacológico , Activación del Canal Iónico/fisiología , Síndrome del Seno Enfermo/tratamiento farmacológico , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/fisiología , Humanos , Ratones , Ratones Noqueados
2.
J Cell Mol Med ; 13(9B): 3703-12, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19438811

RESUMEN

Cell-based therapies have great potential for the treatment of cardiovascular diseases. Recently, using a transgenic mouse model Roell et al. reported that cardiac engraftment of connexin43 (Cx43)-overexpressing myoblasts in vivo prevents post-infarct arrhythmia, a common cause of death in patients following heart attack. We carried out a similar study but in a clinically relevant context via transplantation of autologous connexin43-overexpressing myoblasts in infarcted rats. Seven days after coronary ligation, rats were randomized into three groups: a control group injected with myoblasts, a null group injected with myoblasts transduced with an empty lentivirus vector (null) and a Cx43 group injected with myoblasts transduced with a lentivirus vector encoding connexin43. In contrast to Roell's report, arrhythmia occurrence was not statistically different between groups (58%, 64% and 48% for the control (n= 12), null (n= 14) and Cx43 (n= 23) groups, respectively, P= 0.92). Using ex vivo intramural monophasic action potential recordings synchronous electrical activity was observed between connexin43-overexpressing myoblasts and host cardiomyocytes, whereas such synchrony did not occur in the null-transduced group. This suggests that ex vivo connexin43 gene transfer and expression in myoblasts improved intercellular electrical coupling between myoblasts and cardiomyocytes. However, in our model such electrical coupling was not sufficient to decrease arrhythmia induction. Therefore, we would suggest a note of caution on the use of combined Cx43 gene and cell therapy to prevent post-infarct arrhythmias in heart failure patients.


Asunto(s)
Arritmias Cardíacas/patología , Conexina 43/biosíntesis , Regulación de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Mioblastos Esqueléticos/citología , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Técnicas de Transferencia de Gen , Insuficiencia Cardíaca/patología , Masculino , Mioblastos Esqueléticos/metabolismo , Infarto del Miocardio/patología , Ratas , Ratas Wistar
3.
J Cardiovasc Electrophysiol ; 17(1): 97-100, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16426410

RESUMEN

Mutations in the SCN5A gene can cause Brugada syndrome, a genetically inherited form of idiopathic ventricular fibrillation. We describe the case of a 3-year-old child with a structurally normal heart presenting with monomorphic ventricular tachycardia. Her electrocardiogram suggested a Brugada syndrome and the diagnosis was confirmed by the identification of a Brugada syndrome in her mother and in two other family members. Genetic study led to the identification of a c.2516T-->C SCN5A mutation. The child was treated with quinidine therapy without recurrence of arrhythmic events for a time period of 16 months.


Asunto(s)
Antiarrítmicos/uso terapéutico , Bloqueo de Rama/complicaciones , Quinidina/análogos & derivados , Síncope/complicaciones , Taquicardia Ventricular/tratamiento farmacológico , Bloqueo de Rama/genética , Bloqueo de Rama/fisiopatología , Preescolar , ADN/genética , Análisis Mutacional de ADN , Electrocardiografía , Femenino , Estudios de Seguimiento , Frecuencia Cardíaca , Humanos , Proteínas Musculares/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.5 , Quinidina/uso terapéutico , Canales de Sodio/genética , Síncope/genética , Síncope/fisiopatología , Síndrome , Taquicardia Ventricular/etiología , Taquicardia Ventricular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA