Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(7): 072501, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35244436

RESUMEN

The differential cross sections of the Σ^{-}p→Λn reaction were measured accurately for the Σ^{-} momentum (p_{Σ}) ranging from 470 to 650 MeV/c at the J-PARC Hadron Experimental Facility. Precise angular information about the Σ^{-}p→Λn reaction was obtained for the first time by detecting approximately 100 reaction events at each angular step of Δcosθ=0.1. The obtained differential cross sections show a slightly forward-peaking structure in the measured momentum regions. The cross sections integrated for -0.7≤cosθ≤1.0 were obtained as 22.5±0.68 [statistical error(stat.)] ±0.65 [systematic error(syst.)] mb and 15.8±0.83(stat)±0.52(syst) mb for 470

2.
Phys Rev Lett ; 120(13): 132505, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694189

RESUMEN

We report on the first observation of γ rays emitted from an sd-shell hypernucleus, _{Λ}^{19}F. The energy spacing between the ground state doublet, 1/2^{+} and 3/2^{+} states, of _{Λ}^{19}F is determined to be 315.5±0.4(stat)_{-0.5}^{+0.6}(syst) keV by measuring the γ-ray energy of the M1(3/2^{+}→1/2^{+}) transition. In addition, three γ-ray peaks are observed and assigned as E2(5/2^{+}→1/2^{+}), E1(1/2^{-}→1/2^{+}), and E1(1/2^{-}→3/2^{+}) transitions. The excitation energies of the 5/2^{+} and 1/2^{-} states are determined to be 895.2±0.3(stat)±0.5(syst) and 1265.6±1.2(stat)_{-0.5}^{+0.7}(syst) keV, respectively. It is found that the ground state doublet spacing is well described by theoretical models based on existing s- and p-shell hypernuclear data.

3.
Phys Rev Lett ; 115(22): 222501, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26650298

RESUMEN

The energy spacing between the spin-doublet bound state of _{Λ}^{4}He(1^{+},0^{+}) was determined to be 1406±2±2 keV, by measuring γ rays for the 1^{+}→0^{+} transition with a high efficiency germanium detector array in coincidence with the ^{4}He(K^{-},π^{-})_{Λ}^{4}He reaction at J-PARC. In comparison to the corresponding energy spacing in the mirror hypernucleus _{Λ}^{4}H, the present result clearly indicates the existence of charge symmetry breaking (CSB) in ΛN interaction. By combining the energy spacings with the known ground-state binding energies, it is also found that the CSB effect is large in the 0^{+} ground state but is vanishingly small in the 1^{+} excited state, demonstrating that the ΛN CSB interaction has spin dependence.

4.
Phys Rev Lett ; 109(13): 132002, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23030084

RESUMEN

The Θ(+) pentaquark baryon was searched for via the π(-)p→K(-)X reaction with a missing mass resolution of 1.4 MeV/c(2) (FWHM) at the Japan Proton Accelerator Research Complex (J-PARC). π(-) meson beams were incident on the liquid hydrogen target with a beam momentum of 1.92 GeV/c. No peak structure corresponding to the Θ(+) mass was observed. The upper limit of the production cross section averaged over the scattering angle of 2° to 15° in the laboratory frame is obtained to be 0.26 µb/sr in the mass region of 1.51-1.55 GeV/c(2). The upper limit of the Θ(+) decay width is obtained to be 0.72 and 3.1 MeV for J(Θ)(P)=1/2(+) and J(Θ)(P)=1/2(-), respectively, using the effective Lagrangian approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA