Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(21): e2200022119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35584114

RESUMEN

Inducible nitric oxide synthase (NOS2) produces high local concentrations of nitric oxide (NO), and its expression is associated with inflammation, cellular stress signals, and cellular transformation. Additionally, NOS2 expression results in aggressive cancer cell phenotypes and is correlated with poor outcomes in patients with breast cancer. DNA hypomethylation, especially of noncoding repeat elements, is an early event in carcinogenesis and is a common feature of cancer cells. In addition to altered gene expression, DNA hypomethylation results in genomic instability via retrotransposon activation. Here, we show that NOS2 expression and associated NO signaling results in substantial DNA hypomethylation in human cell lines by inducing the degradation of DNA (cytosine-5)­methyltransferase 1 (DNMT1) protein. Similarly, NOS2 expression levels were correlated with decreased DNA methylation in human breast tumors. NOS2 expression and NO signaling also resulted in long interspersed noncoding element 1 (LINE-1) retrotransposon hypomethylation, expression, and DNA damage. DNMT1 degradation was mediated by an NO/p38-MAPK/lysine acetyltransferase 5­dependent mechanism. Furthermore, we show that this mechanism is required for NO-mediated epithelial transformation. Therefore, we conclude that NOS2 and NO signaling results in DNA damage and malignant cellular transformation via an epigenetic mechanism.


Asunto(s)
Metilación de ADN , Inflamación , S-Nitrosotioles , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Humanos , Inflamación/genética , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Retroelementos/genética
2.
NMR Biomed ; 36(8): e4932, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36940044

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide. Liver biopsy remains the gold standard for diagnosis and staging of disease. There is a clinical need for noninvasive diagnostic tools for risk stratification, follow-up, and monitoring treatment response that are currently lacking, as well as preclinical models that recapitulate the etiology of the human condition. We have characterized the progression of NAFLD in eNOS-/- mice fed a high fat diet (HFD) using noninvasive Dixon-based magnetic resonance imaging and single voxel STEAM spectroscopy-based protocols to measure liver fat fraction at 3 T. After 8 weeks of diet intervention, eNOS-/- mice exhibited significant accumulation of intra-abdominal and liver fat compared with control mice. Liver fat fraction measured by 1 H-MRS in vivo showed a good correlation with the NAFLD activity score measured by histology. Treatment of HFD-fed NOS3-/- mice with metformin showed significantly reduced liver fat fraction and altered hepatic lipidomic profile compared with untreated mice. Our results show the potential of in vivo liver MRI and 1 H-MRS to noninvasively diagnose and stage the progression of NAFLD and to monitor treatment response in an eNOS-/- murine model that represents the classic NAFLD phenotype associated with metabolic syndrome.


Asunto(s)
Metformina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos Grasos/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Modelos Animales de Enfermedad , Hígado/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Ratones Endogámicos C57BL
3.
Inorg Chem ; 61(20): 8000-8014, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35544683

RESUMEN

N-Triphos derivatives (NP3R, R = alkyl, aryl) and asymmetric variants (NP2RXR', R' = alkyl, aryl, X = OH, NR2, NRR') are an underexplored class of tuneable, tripodal ligands in relation to the coordination chemistry of Re and Tc for biomedical applications. Mixed-ligand approaches are a flexible synthetic route to obtain Tc complexes of differing core structures and physicochemical properties. Reaction of the NP3Ph ligand with the Re(V) oxo precursor [ReOCl3(PPh3)2] generated the bidentate complex [ReOCl3(κ2-NP2PhOHAr)], which possesses an unusual AA'BB'XX' spin system with a characteristic second-order NMR lineshape that is sensitive to the bi- or tridentate nature of the coordinating diphosphine unit. The use of the asymmetric NP2PhOHAr ligand resulted in the formation of both bidentate and tridentate products depending on the presence of base. The tridentate Re(V) complex [ReOCl2(κ3-NP2PhOAr)] has provided the basis of a new reactive "metal-fragment" for further functionalization in [3 + 2] mixed-ligand complexes. The synthesis of [3 + 2] complexes with catechol-based π-donors could also be achieved under one-pot, single-step conditions from Re(V) oxo precursors. Analogous complexes can also be synthesized from suitable 99Tc(V) precursors, and these complexes have been shown to exhibit highly similar structural properties through spectroscopic and chromatographic analysis. However, a tendency for the {MVO}3+ core to undergo hydrolysis to the {MVO2}+ core has been observed both in the case of M = Re and markedly for M = 99Tc complexes. It is likely that controlling this pathway will be critical to the generation of further stable Tc(V) derivatives.


Asunto(s)
Fosfinas , Ligandos , Espectroscopía de Resonancia Magnética , Fosfinas/química
4.
Bioconjug Chem ; 32(7): 1276-1289, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32786371

RESUMEN

Calcium minerals such as hydroxyapatite (HAp) can be detected noninvasively in vivo using nuclear imaging agents such as [18F]NaF (available from cyclotrons), for positron emission tomography (PET) and 99mTc-radiolabeled bisphosphonates (BP; available from 99mTc generators for single photon emission computed tomography (SPECT) or scintigraphy). These two types of imaging agents allow detection of bone metastases (based on the presence of HAp) and vascular calcification lesions (that contain HAp and other calcium minerals). With the aim of developing a cyclotron-independent PET radiotracer for these lesions, with broad calcium mineral affinity and simple one-step radiolabeling, we developed [68Ga]Ga-THP-Pam. Radiolabeling with 68Ga is achieved using a mild single-step kit (5 min, room temperature, pH 7) to high radiochemical yield and purity (>95%). NMR studies demonstrate that Ga binds via the THP chelator, leaving the BP free to bind to its biological target. [68Ga]Ga-THP-Pam shows high stability in human serum. The calcium mineral binding of [68Ga]Ga-THP-Pam was compared in vitro to two other 68Ga-BPs which have been successfully evaluated in humans, [68Ga]Ga-NO2APBP and [68Ga]Ga-BPAMD, as well as [18F]NaF. Interestingly, we found that all 68Ga-BPs have a high affinity for a broad range of calcium minerals implicated in vascular calcification disease, while [18F]NaF is selective for HAp. Using healthy young mice as a model of metabolically active growing calcium mineral in vivo, we compared the pharmacokinetics and biodistribution of [68Ga]Ga-THP-Pam with [18F]NaF as well as [68Ga]NO2APBP. These studies revealed that [68Ga]Ga-THP-Pam has high in vivo affinity for bone tissue (high bone/muscle and bone/blood ratios) and fast blood clearance (t1/2 < 10 min) comparable to both [68Ga]NO2APBP and [18F]NaF. Overall, [68Ga]Ga-THP-Pam shows high potential for clinical translation as a cyclotron-independent calcium mineral PET radiotracer, with simple and efficient radiochemistry that can be easily implemented in any radiopharmacy.


Asunto(s)
Calcio/química , Difosfonatos/química , Radioisótopos de Galio/química , Tomografía de Emisión de Positrones/métodos , Animales , Quelantes/química , Espectroscopía de Resonancia Magnética/métodos , Ratones , Distribución Tisular
5.
Bioorg Med Chem Lett ; 42: 128044, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33865971

RESUMEN

Glutamate carboxypeptidase II (GCP(II)), also known as the prostate-specific membrane antigen (PSMA), is a transmembrane zinc(II) metalloenzyme overexpressed in prostate cancer. Inhibitors of this receptor are used to target molecular imaging agents and molecular radiotherapy agents to prostate cancer and if the affinity of inhibitors for GCP(II)/PSMA could be improved, targeting might also improve. Compounds containing the dipeptide OH-Lys-C(O)-Glu-OH (compound 3), incorporating a urea motif, have high affinity for GCP(II)/PSMA. We hypothesized that substituting the zinc-coordinating urea group for a thiourea group, thus incorporating a sulfur atom, could facilitate stronger binding to zinc(II) within the active site, and thus improve affinity for GCP(II)/PSMA. A structurally analogous urea and thiourea pair (HO-Glu-C(O)-Glu-OH - compound 5 and HO-Glu-C(S)-Glu-OH - compound 6) were synthesized and the inhibitory concentration (IC50) of each compound measured with a cell-based assay, allowing us to refute the hypothesis: the thiourea analogue showed 100-fold weaker binding to PSMA than the urea analogue.


Asunto(s)
Dipéptidos/farmacología , Inhibidores Enzimáticos/farmacología , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Urea/farmacología , Antígenos de Superficie/metabolismo , Dipéptidos/síntesis química , Dipéptidos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Estructura Molecular , Relación Estructura-Actividad , Urea/análogos & derivados , Urea/química
6.
Ann Hepatol ; 25: 100358, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33962045

RESUMEN

INTRODUCTION AND OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver abnormalities including steatosis, steatohepatitis, fibrosis, and cirrhosis. Liver biopsy remains the gold standard method to determine the disease stage in NAFLD but is an invasive and risky procedure. Studies have previously reported that changes in intrahepatic fatty acids (FA) composition are related to the progression of NAFLD, mainly in its early stages. The aim of this study was to characterize the liver FA composition in mice fed a Choline-deficient L-amino-defined (CDAA) diet at different stages of NAFLD using magnetic resonance spectroscopy (MRS). METHODS: We used in-vivo MRS to perform a longitudinal characterization of hepatic FA changes in NAFLD mice for 10 weeks. We validated our findings with ex-vivo MRS, gas chromatography-mass spectrometry and histology. RESULTS: In-vivo and ex-vivo results showed that livers from CDAA-fed mice exhibit a significant increase in liver FA content as well as a change in FA composition compared with control mice. After 4 weeks of CDAA diet, a decrease in polyunsaturated and an increase in monounsaturated FA were observed. These changes were associated with the appearance of early stages of steatohepatitis, confirmed by histology (NAFLD Activity Score (NAS) = 4.5). After 10 weeks of CDAA-diet, the liver FA composition remained stable while the NAS increased further to 6 showing a combination of early and late stages of steatohepatitis. CONCLUSION: Our results suggest that monitoring lipid composition in addition to total water/fat with MRS may yield additional insights that can be translated for non-invasive stratification of high-risk NAFLD patients.


Asunto(s)
Ácidos Grasos/metabolismo , Espectroscopía de Resonancia Magnética , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
8.
Biol Lett ; 15(11): 20190710, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31771414

RESUMEN

The African naked mole-rat (Heterocephalus glaber) is unique among mammals, displaying extreme longevity, resistance to cardiovascular disease and an ability to survive long periods of extreme hypoxia. The metabolic adaptations required for resistance to hypoxia are hotly debated and a recent report provides evidence that they are able to switch from glucose to fructose driven glycolysis in the brain. However, other systemic alterations in their metabolism are largely unknown. In the current study, a semi-targeted high resolution 1H magnetic resonance spectroscopy (MRS) metabolomics investigation was performed on cardiac tissue from the naked mole-rat (NMR) and wild-type C57/BL6 mice to better understand these adaptations. A range of metabolic differences was observed in the NMR including increased lactate, consistent with enhanced rates of glycolysis previously reported, increased glutathione, suggesting increased resistance to oxidative stress and decreased succinate/fumarate ratio suggesting reduced oxidative phosphorylation and ROS production. Surprisingly, the most significant difference was an elevation of glycogen stores and glucose-1-phosphate resulting from glycogen turnover, that were completely absent in the mouse heart and above the levels found in the mouse liver. Thus, we identified a range of metabolic adaptations in the NMR heart that are relevant to their ability to survive extreme environmental pressures and metabolic stress. Our study underscores the plasticity of energetic pathways and the need for compensatory strategies to adapt in response to the physiological and pathological stress including ageing and ischaemic heart pathologies.


Asunto(s)
Glucógeno , Ratas Topo , Adaptación Fisiológica , Animales , Longevidad , Metabolómica , Ratones
9.
Biochem Soc Trans ; 46(4): 817-827, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29970448

RESUMEN

Alterations in excitation-contraction coupling and elevated intracellular sodium (Nai) are hallmarks of pathological cardiac remodelling that underline contractile dysfunction. In addition, changes in cardiac metabolism are observed in cardiac hypertrophy and heart failure (HF) that lead to a mismatch in ATP supply and demand, contributing to poor prognosis. A link between Nai and altered metabolism has been proposed but is not well understood. Many mitochondrial enzymes are stimulated by mitochondrial calcium (Camito) during contraction, thereby sustaining production of reducing equivalents to maintain ATP supply. This stimulation is thought to be perturbed when cytosolic Nai is high due to increased Camito efflux, potentially compromising ATPmito production and leading to metabolic dysregulation. Increased Nai has been previously shown to affect Camito; however, whether Nai elevation plays a causative role in energetic mismatching in the hypertrophied and failing heart remains unknown. In this review, we discuss the relationship between elevated Nai, NaK ATPase dysregulation and the metabolic phenotype in the contexts of pathological hypertrophy and HF and their link to metabolic flexibility, capacity (reserve) and efficiency that are governed by intracellular ion homeostasis. The development of non-invasive analytical techniques using nuclear magnetic resonance able to probe metabolism in situ in the functioning heart will enable a better understanding of the underlying mechanisms of Nai overload in cardiac pathophysiology. They will lead to novel insights that help to explain the metabolic contribution towards these diseases, the incomplete rescue observed with current therapies and a rationale for future energy-targeted therapies.


Asunto(s)
Cardiomegalia/metabolismo , Sodio/metabolismo , Remodelación Ventricular/fisiología , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Cardiomegalia/complicaciones , Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Homeostasis , Humanos , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
10.
Amino Acids ; 48(8): 1969-81, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27143170

RESUMEN

Mice over-expressing the creatine transporter have elevated myocardial creatine levels [Cr] and are protected against ischaemia/reperfusion injury via improved energy reserve. However, mice with very high [Cr] develop cardiac hypertrophy and dysfunction. To investigate these contrasting effects, we applied a non-biased hypothesis-generating approach to quantify global protein and metabolite changes in the LV of mice stratified for [Cr] levels: wildtype, moderately elevated, and high [Cr] (65-85; 100-135; 160-250 nmol/mg protein, respectively). Male mice received an echocardiogram at 7 weeks of age with tissue harvested at 8 weeks. RV was used for [Cr] quantification by HPLC to select LV tissue for subsequent analysis. Two-dimensional difference in-gel electrophoresis identified differentially expressed proteins, which were manually picked and trypsin digested for nano-LC-MS/MS. Principal component analysis (PCA) showed efficient group separation (ANOVA P ≤ 0.05) and peptide sequences were identified by mouse database (UniProt 201203) using Mascot. A total of 27 unique proteins were found to be differentially expressed between normal and high [Cr], with proteins showing [Cr]-dependent differential expression, chosen for confirmation, e.g. α-crystallin B, a heat shock protein implicated in cardio-protection and myozenin-2, which could contribute to the hypertrophic phenotype. Nuclear magnetic resonance (¹H-NMR at 700 MHz) identified multiple strong correlations between [Cr] and key cardiac metabolites. For example, positive correlations with α-glucose (r² = 0.45; P = 0.002), acetyl-carnitine (r² = 0.50; P = 0.001), glutamine (r² = 0.59; P = 0.0002); and negative correlations with taurine (r² = 0.74; P < 0.0001), fumarate (r² = 0.45; P = 0.003), aspartate (r² = 0.59; P = 0.0002), alanine (r² = 0.66; P < 0.0001) and phosphocholine (r² = 0.60; P = 0.0002). These findings suggest wide-ranging and hitherto unexpected adaptations in substrate utilisation and energy metabolism with a general pattern of impaired energy generating pathways in mice with very high creatine levels.


Asunto(s)
Creatina/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica , Proteínas Musculares/biosíntesis , Contracción Miocárdica , Daño por Reperfusión Miocárdica/metabolismo , Animales , Masculino , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Transporte de Membrana/genética , Metabolómica , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio , Proteómica , Conejos
12.
J Mol Cell Cardiol ; 86: 95-101, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26196304

RESUMEN

We investigate the potential of multiple quantum filtered (MQF) (23)Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32±6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the (23)Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM(3SA) mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered (23)Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation.


Asunto(s)
Corazón/fisiopatología , Preparación de Corazón Aislado , Miocardio/metabolismo , Animales , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratones , Radiografía , Sodio/metabolismo , Radioisótopos de Sodio/administración & dosificación , Radioisótopos de Sodio/metabolismo
13.
Magn Reson Med ; 73(6): 2332-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25046363

RESUMEN

PURPOSE: To assess the feasibility of using a hybrid Maximum-Entropy/Nonlinear Least Squares (MEM/NLS) method for analyzing the kinetics of hyperpolarized dynamic data with minimum a priori knowledge. THEORY AND METHODS: A continuous distribution of rates obtained through the Laplace inversion of the data is used as a constraint on the NLS fitting to derive a discrete spectrum of rates. Performance of the MEM/NLS algorithm was assessed through Monte Carlo simulations and validated by fitting the longitudinal relaxation time curves of hyperpolarized [1-(13) C] pyruvate acquired at 9.4 Tesla and at three different flip angles. The method was further used to assess the kinetics of hyperpolarized pyruvate-lactate exchange acquired in vitro in whole blood and to re-analyze the previously published in vitro reaction of hyperpolarized (15) N choline with choline kinase. RESULTS: The MEM/NLS method was found to be adequate for the kinetic characterization of hyperpolarized in vitro time-series. Additional insights were obtained from experimental data in blood as well as from previously published (15) N choline experimental data. CONCLUSION: The proposed method informs on the compartmental model that best approximate the biological system observed using hyperpolarized (13) C MR especially when the metabolic pathway assessed is complex or a new hyperpolarized probe is used.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Algoritmos , Isótopos de Carbono , Colina/metabolismo , Medios de Contraste , Estudios de Factibilidad , Humanos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Cinética , Lactatos/metabolismo , Análisis de los Mínimos Cuadrados , Meglumina , Método de Montecarlo , Isótopos de Nitrógeno , Compuestos Organometálicos , Ácido Pirúvico/metabolismo
14.
Nat Commun ; 15(1): 4277, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769288

RESUMEN

Elevated intracellular sodium Nai adversely affects mitochondrial metabolism and is a common feature of heart failure. The reversibility of acute Na induced metabolic changes is evaluated in Langendorff perfused rat hearts using the Na/K ATPase inhibitor ouabain and the myosin-uncoupler para-aminoblebbistatin to maintain constant energetic demand. Elevated Nai decreases Gibb's free energy of ATP hydrolysis, increases the TCA cycle intermediates succinate and fumarate, decreases ETC activity at Complexes I, II and III, and causes a redox shift of CoQ to CoQH2, which are all reversed on lowering Nai to baseline levels. Pseudo hypoxia and stabilization of HIF-1α is observed despite normal tissue oxygenation. Inhibition of mitochondrial Na/Ca-exchange with CGP-37517 or treatment with the mitochondrial ROS scavenger MitoQ prevents the metabolic alterations during Nai elevation. Elevated Nai plays a reversible role in the metabolic and functional changes and is a novel therapeutic target to correct metabolic dysfunction in heart failure.


Asunto(s)
Mitocondrias Cardíacas , Sodio , Animales , Ratas , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Sodio/metabolismo , Masculino , Miocardio/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Ratas Sprague-Dawley , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Oxidación-Reducción , Ácido Succínico/metabolismo
15.
Nat Commun ; 15(1): 2204, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538579

RESUMEN

The naked mole-rat Heterocephalus glaber is a eusocial mammal exhibiting extreme longevity (37-year lifespan), extraordinary resistance to hypoxia and absence of cardiovascular disease. To identify the mechanisms behind these exceptional traits, metabolomics and RNAseq of cardiac tissue from naked mole-rats was compared to other African mole-rat genera (Cape, Cape dune, Common, Natal, Mahali, Highveld and Damaraland mole-rats) and evolutionarily divergent mammals (Hottentot golden mole and C57/BL6 mouse). We identify metabolic and genetic adaptations unique to naked mole-rats including elevated glycogen, thus enabling glycolytic ATP generation during cardiac ischemia. Elevated normoxic expression of HIF-1α is observed while downstream hypoxia responsive-genes are down-regulated, suggesting adaptation to low oxygen environments. Naked mole-rat hearts show reduced succinate levels during ischemia compared to C57/BL6 mouse and negligible tissue damage following ischemia-reperfusion injury. These evolutionary traits reflect adaptation to a unique hypoxic and eusocial lifestyle that collectively may contribute to their longevity and health span.


Asunto(s)
Longevidad , Oxígeno , Animales , Ratones , Longevidad/genética , Hipoxia/genética , Ratas Topo/genética , Isquemia
16.
Cancer Metab ; 12(1): 15, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38783368

RESUMEN

BACKGROUND: Glycolytic flux is regulated by the energy demands of the cell. Upregulated glycolysis in cancer cells may therefore result from increased demand for adenosine triphosphate (ATP), however it is unknown what this extra ATP turnover is used for. We hypothesise that an important contribution to the increased glycolytic flux in cancer cells results from the ATP demand of Na+/K+-ATPase (NKA) due to altered sodium ion homeostasis in cancer cells. METHODS: Live whole-cell measurements of intracellular sodium [Na+]i were performed in three human breast cancer cells (MDA-MB-231, HCC1954, MCF-7), in murine breast cancer cells (4T1), and control human epithelial cells MCF-10A using triple quantum filtered 23Na nuclear magnetic resonance (NMR) spectroscopy. Glycolytic flux was measured by 2H NMR to monitor conversion of [6,6-2H2]D-glucose to [2H]-labelled L-lactate at baseline and in response to NKA inhibition with ouabain. Intracellular [Na+]i was titrated using isotonic buffers with varying [Na+] and [K+] and introducing an artificial Na+ plasma membrane leak using the ionophore gramicidin-A. Experiments were carried out in parallel with cell viability assays, 1H NMR metabolomics of intracellular and extracellular metabolites, extracellular flux analyses and in vivo measurements in a MDA-MB-231 human-xenograft mouse model using 2-deoxy-2-[18F]fluoroglucose (18F-FDG) positron emission tomography (PET). RESULTS: Intracellular [Na+]i was elevated in human and murine breast cancer cells compared to control MCF-10A cells. Acute inhibition of NKA by ouabain resulted in elevated [Na+]i and inhibition of glycolytic flux in all three human cancer cells which are ouabain sensitive, but not in the murine cells which are ouabain resistant. Permeabilization of cell membranes with gramicidin-A led to a titratable increase of [Na+]i in MDA-MB-231 and 4T1 cells and a Na+-dependent increase in glycolytic flux. This was attenuated with ouabain in the human cells but not in the murine cells. 18FDG PET imaging in an MDA-MB-231 human-xenograft mouse model recorded lower 18FDG tumour uptake when treated with ouabain while murine tissue uptake was unaffected. CONCLUSIONS: Glycolytic flux correlates with Na+-driven NKA activity in breast cancer cells, providing evidence for the 'centrality of the [Na+]i-NKA nexus' in the mechanistic basis of the Warburg effect.

17.
NMR Biomed ; 26(10): 1321-1325, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23712817

RESUMEN

Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. The measurement of exchange kinetics using hyperpolarized (13) C NMR has provided a biomarker of response to novel therapeutics. However, the observable signal is restricted to the exchanging hyperpolarized (13) C pools and the endogenous pools of (12) C-labelled metabolites are invisible in these measurements. In this study, we investigated an alternative in vitro (1) H NMR assay, using [3-(13) C]pyruvate, and compared the measured kinetics with a hyperpolarized (13) C NMR assay, using [1-(13) C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL ) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL = 0.506 ± 0.054 and kPL = 0.441 ± 0.090 nmol/s/10(6) cells; mean ± standard deviation; n = 3); (1) H, (13) C assays, respectively). The apparent backward reaction rate constant (kLP ) could only be measured with good reproducibility using the (1) H NMR assay (kLP = 0.376 ± 0.091 nmol/s/10(6) cells; mean ± standard deviation; n = 3). The (1) H NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity.


Asunto(s)
Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética , Protones , Ácido Pirúvico/metabolismo , Isótopos de Carbono , Línea Celular Tumoral , Humanos , L-Lactato Deshidrogenasa/metabolismo
18.
Cardiovasc Res ; 119(16): 2672-2680, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-37819017

RESUMEN

AIMS: Empagliflozin (EMPA), a potent inhibitor of the renal sodium-glucose cotransporter 2 and an effective treatment for Type 2 diabetes, has been shown to have cardioprotective effects, independent of improved glycaemic control. Several non-canonical mechanisms have been proposed to explain these cardiac effects, including increasing circulating ketone supply to the heart. This study aims to test whether EMPA directly alters cardiac ketone metabolism independent of supply. METHODS AND RESULTS: The direct effects of EMPA on cardiac function and metabolomics were investigated in Langendorff rat heart perfused with buffer containing 5 mM glucose, 4 mM ß-hydroxybutyrate (ßHb) and 0.4 mM intralipid, subject to low flow ischaemia/reperfusion. Cardiac energetics were monitored in situ using 31P NMR spectroscopy. Steady-state 13C labelling was performed by switching 12C substrates for 13C1 glucose or 13C4 ßHb and 13C incorporation into metabolites determined using 2D 1H-13C HSQC NMR spectroscopy. EMPA treatment improved left ventricular-developed pressure during ischaemia and reperfusion compared to vehicle-treated hearts. In EMPA-treated hearts, total adenosine triphosphate (ATP) and phosphocreatine (PCr) levels, and Gibbs free energy for ATP hydrolysis were significantly higher during ischaemia and reperfusion. EMPA treatment did not alter the incorporation of 13C from glucose into glycolytic products lactate or alanine neither during ischaemia nor reperfusion. In ischaemia, EMPA led to a decrease in 13C1 glucose incorporation and a concurrent increase in 13C4 ßHb incorporation into tricarboxylic acid (TCA) cycle intermediates succinate, citrate, and glutamate. During reperfusion, the concentration of metabolites originating from 13C1 glucose was similar to vehicle but those originating from 13C4 ßHb remained elevated in EMPA-treated hearts. CONCLUSION: Our findings indicate that EMPA causes a switch in metabolism away from glucose oxidation towards increased ketone utilization in the rat heart, thereby improving function and energetics both during ischaemia and recovery during reperfusion. This preference of ketone utilization over glucose was observed under conditions of constant supply of substrate, suggesting that EMPA acts directly by modulating cardiac substrate preference, independent of substrate availability. The mechanisms underlying our findings are currently unknown, warranting further study.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratas , Animales , Glucosa , Adenosina Trifosfato/metabolismo , Isquemia , Reperfusión
19.
Nanoscale ; 15(25): 10763-10775, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37325846

RESUMEN

Manganese dioxide (MnO2)-based nanostructures have emerged as promising tumour microenvironment (TME) responsive platforms. Herein, we used a one-pot reaction to prepare MnO2 nanostructures with Pt(IV) prodrugs as redox- (and thus TME-) responsive theranostics for cancer therapy, in which the Pt(IV) complexes act as prodrugs of cisplatin (Pt(II)), a clinical chemotherapeutic drug. The cytotoxicity of these MnO2-Pt(IV) probes was evaluated in two and three dimensional (2D and 3D) A549 cell models and found to be as effective as active drug cisplatin in 3D models. Moreover, MnO2-Pt(IV) nanoparticles exhibited strong off/ON magnetic resonance (MR) contrast in response to reducing agents, with the longitudinal relaxivity (r1) increasing 136-fold upon treatment with ascorbic acid. This off/ON MR switch was also observed in (2D and 3D) cells in vitro. In vivo MRI experiments revealed that the nanostructures induce a strong and long-lasting T1 signal enhancement upon intratumoral injection in A549 tumour-bearing mice. These results show the potential of MnO2-Pt(IV) NPs as redox responsive MR theranostics for cancer therapy.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Profármacos , Ratones , Animales , Cisplatino , Óxidos/farmacología , Óxidos/química , Compuestos de Manganeso/farmacología , Compuestos de Manganeso/química , Medicina de Precisión , Profármacos/química , Nanoestructuras/química , Nanopartículas/química , Oxidación-Reducción , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
20.
Mol Imaging Biol ; 24(3): 377-383, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34820762

RESUMEN

PURPOSE: To determine the sensitivity of the 18F-radiolabelled dihydroethidine analogue ([18F]DHE) to ROS in a validated ex vivo model of tissue oxidative stress. PROCEDURES: The sensitivity of [18F]DHE to various ROS-generating systems was first established in vitro. Then, isolated rat hearts were perfused under constant flow, with contractile function monitored by intraventricular balloon. Cardiac uptake of infused [18F]DHE (50-150 kBq.min-1) was monitored by γ-detection, while ROS generation was invoked by menadione infusion (0, 10, or 50 µm), validated by parallel measures of cardiac oxidative stress. RESULTS: [18F]DHE was most sensitive to oxidation by superoxide and hydroxyl radicals. Normalised [18F]DHE uptake was significantly greater in menadione-treated hearts (1.44 ± 0.27) versus control (0.81 ± 0.07) (p < 0.05, n = 4/group), associated with concomitant cardiac contractile dysfunction, glutathione depletion, and PKG1α dimerisation. CONCLUSION: [18F]DHE reports on ROS in a validated model of oxidative stress where perfusion (and tracer delivery) is unlikely to impact its pharmacokinetics.


Asunto(s)
Dicarbetoxidihidrocolidina , Vitamina K 3 , Animales , Dicarbetoxidihidrocolidina/análogos & derivados , Tomografía de Emisión de Positrones , Ratas , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA