Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Neuroendocrinology ; 114(5): 483-510, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38128505

RESUMEN

INTRODUCTION: The supramammillary nucleus (SuMN) exerts influences on a wide range of brain functions including feeding and feeding-independent fuel metabolism. However, which specific neuronal type(s) within the SuMN manifest this influence has not been delineated. This study investigated the effect of SuMN tyrosine hydroxylase (TH) (rate-limiting enzyme in dopamine synthesis) knockdown (THx) on peripheral fuel metabolism. METHODS: SuMN-THx was accomplished using a virus-mediated shRNA to locally knockdown TH gene expression at the SuMN. The impact of SuMN-THx was examined over 35-72 days in rats least prone to developing metabolic syndrome (MS) - female Sprague-Dawley rats resistant to the obesogenic effect of high fat diet (HFDr) and fed regular chow (RC) - upon body weight/fat, feeding, glucose tolerance, and insulin sensitivity. The influence of HFD, gender, and long-term response of SuMN-THx was subsequently investigated in female HFDr rats fed HFD, male HFDr rats fed RC, and female HFD-sensitive rats fed RC over 1 year, respectively. RESULTS: SuMN-THx induced obesity and glucose intolerance, elevated plasma leptin and triglycerides, increased hepatic mRNA levels of gluconeogenic, lipogenic, and pro-inflammatory genes, reduced white adipose fatty acid oxidation rate, and altered plasma corticosterone level and hepatic circadian gene expression. Moreover, SuMN-THx increased feeding during the natural resting/fasting period and altered ghrelin feeding response suggesting ghrelin resistance. This MS-inducing effect was enhanced by HFD feeding, similarly observed in male rats and persisted over 1 year. DISCUSSION/CONCLUSION: SuMN-THx induced long-term, gender-nonspecific, multiple pathophysiological changes leading to MS suggesting SuMN dopaminergic circuits communicating with other brain metabolism and behavior control centers modulate peripheral fuel metabolism.


Asunto(s)
Dieta Alta en Grasa , Intolerancia a la Glucosa , Obesidad , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa , Animales , Femenino , Obesidad/metabolismo , Obesidad/genética , Masculino , Tirosina 3-Monooxigenasa/metabolismo , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/etiología , Dieta Alta en Grasa/efectos adversos , Ratas , Hipotálamo Posterior/metabolismo , Técnicas de Silenciamiento del Gen
2.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012132

RESUMEN

Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic nervous system activity and central hypodopaminergic function has been demonstrated to potentiate an immune system pro-oxidative/pro-inflammatory condition and this immune phenotype is known to contribute significantly to the advancement of cardiovascular disease (CVD). Therefore, the possibility exists that bromocriptine-QR therapy may reduce adverse cardiovascular events in type 2 diabetes subjects via attenuation of this underlying chronic pro-oxidative/pro-inflammatory state. The present study was undertaken to assess the impact of bromocriptine-QR on a wide range of immune pro-oxidative/pro-inflammatory biochemical pathways and genes known to be operative in the genesis and progression of CVD. Inflammatory peripheral blood mononuclear cell biology is both a significant contributor to cardiovascular disease and also a marker of the body's systemic pro-inflammatory status. Therefore, this study investigated the effects of 4-month circadian-timed (within 2 h of waking in the morning) bromocriptine-QR therapy (3.2 mg/day) in type 2 diabetes subjects whose glycemia was not optimally controlled on the glucagon-like peptide 1 receptor agonist on (i) gene expression status (via qPCR) of a wide array of mononuclear cell pro-oxidative/pro-inflammatory genes known to participate in the genesis and progression of CVD (OXR1, NRF2, NQO1, SOD1, SOD2, CAT, GSR, GPX1, GPX4, GCH1, HMOX1, BiP, EIF2α, ATF4, PERK, XBP1, ATF6, CHOP, GSK3ß, NFkB, TXNIP, PIN1, BECN1, TLR2, TLR4, TLR10, MAPK8, NLRP3, CCR2, GCR, L-selectin, VCAM1, ICAM1) and (ii) humoral measures of sympathetic tone (norepinephrine and normetanephrine), whole-body oxidative stress (nitrotyrosine, TBARS), and pro-inflammatory factors (IL-1ß, IL-6, IL-18, MCP-1, prolactin, C-reactive protein [CRP]). Relative to pre-treatment status, 4 months of bromocriptine-QR therapy resulted in significant reductions of mRNA levels in PBMC endoplasmic reticulum stress-unfolded protein response effectors [GRP78/BiP (34%), EIF2α (32%), ATF4 (29%), XBP1 (25%), PIN1 (14%), BECN1 (23%)], oxidative stress response proteins [OXR1 (31%), NRF2 (32%), NQO1 (39%), SOD1 (52%), CAT (26%), GPX1 (33%), GPX4 (31%), GCH1 (30%), HMOX1 (40%)], mRNA levels of TLR pro-inflammatory pathway proteins [TLR2 (46%), TLR4 (20%), GSK3ß (19%), NFkB (33%), TXNIP (18%), NLRP3 (32%), CCR2 (24%), GCR (28%)], mRNA levels of pro-inflammatory cellular receptor proteins CCR2 and GCR by 24% and 28%, and adhesion molecule proteins L-selectin (35%) and VCAM1 (24%). Relative to baseline, bromocriptine-QR therapy also significantly reduced plasma levels of norepinephrine and normetanephrine by 33% and 22%, respectively, plasma pro-oxidative markers nitrotyrosine and TBARS by 13% and 10%, respectively, and pro-inflammatory factors IL-18, MCP1, IL-1ß, prolactin, and CRP by 21%,13%, 12%, 42%, and 45%, respectively. These findings suggest a unique role for circadian-timed bromocriptine-QR sympatholytic dopamine agonist therapy in reducing systemic low-grade sterile inflammation to thereby reduce cardiovascular disease risk.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Bromocriptina/farmacología , Bromocriptina/uso terapéutico , Enfermedades Cardiovasculares/epidemiología , Glucógeno Sintasa Quinasa 3 beta , Humanos , Interleucina-18 , Selectina L , Leucocitos Mononucleares , Factor 2 Relacionado con NF-E2 , Peptidilprolil Isomerasa de Interacción con NIMA , Proteína con Dominio Pirina 3 de la Familia NLR , Normetanefrina , Estrés Oxidativo , Fenotipo , Prolactina , ARN Mensajero , Superóxido Dismutasa-1 , Simpaticolíticos , Sustancias Reactivas al Ácido Tiobarbitúrico , Receptor Toll-Like 2 , Receptor Toll-Like 4
3.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200262

RESUMEN

The treatment of type 2 diabetes patients with bromocriptine-QR, a unique, quick release micronized formulation of bromocriptine, improves glycemic control and reduces adverse cardiovascular events. While the improvement of glycemic control is largely the result of improved postprandial hepatic glucose metabolism and insulin action, the mechanisms underlying the drug's cardioprotective effects are less well defined. Bromocriptine is a sympatholytic dopamine agonist and reduces the elevated sympathetic tone, characteristic of metabolic syndrome and type 2 diabetes, which potentiates elevations of vascular oxidative/nitrosative stress, known to precipitate cardiovascular disease. Therefore, this study investigated the impact of bromocriptine treatment upon biomarkers of vascular oxidative/nitrosative stress (including the pro-oxidative/nitrosative stress enzymes of NADPH oxidase 4, inducible nitric oxide (iNOS), uncoupled endothelial nitric oxide synthase (eNOS), the pro-inflammatory/pro-oxidative marker GTP cyclohydrolase 1 (GTPCH 1), and the pro-vascular health enzyme, soluble guanylate cyclase (sGC) as well as the plasma level of thiobarbituric acid reactive substances (TBARS), a circulating marker of systemic oxidative stress), in hypertensive SHR rats held on a high fat diet to induce metabolic syndrome. Inasmuch as the central nervous system (CNS) dopaminergic activities both regulate and are regulated by CNS circadian pacemaker circuitry, this study also investigated the time-of-day-dependent effects of bromocriptine treatment (10 mg/kg/day at either 13 or 19 h after the onset of light (at the natural waking time or late during the activity period, respectively) among animals held on 14 h daily photoperiods for 16 days upon such vascular biomarkers of vascular redox state, several metabolic syndrome parameters, and mediobasal hypothalamic (MBH) mRNA expression levels of neuropeptides neuropeptide Y (NPY) and agouti-related protein (AgRP) which regulate the peripheral fuel metabolism and of mRNA expression of other MBH glial and neuronal cell genes that support such metabolism regulating neurons in this model system. Such bromocriptine treatment at ZT 13 improved (reduced) biomarkers of vascular oxidative/nitrosative stress including plasma TBARS level, aortic NADPH oxidase 4, iNOS and GTPCH 1 levels, and improved other markers of coupled eNOS function, including increased sGC protein level, relative to controls. However, bromocriptine treatment at ZT 19 produced no improvement in either coupled eNOS function or sGC protein level. Moreover, such ZT 13 bromocriptine treatment reduced several metabolic syndrome parameters including fasting insulin and leptin levels, as well as elevated systolic and diastolic blood pressure, insulin resistance, body fat store levels and liver fat content, however, such effects of ZT 19 bromocriptine treatment were largely absent versus control. Finally, ZT 13 bromocriptine treatment reduced MBH NPY and AgRP mRNA levels and mRNA levels of several MBH glial cell/neuronal genes that code for neuronal support/plasticity proteins (suggesting a shift in neuronal structure/function to a new metabolic control state) while ZT 19 treatment reduced only AgRP, not NPY, and was with very little effect on such MBH glial cell genes expression. These findings indicate that circadian-timed bromocriptine administration at the natural circadian peak of CNS dopaminergic activity (that is diminished in insulin resistant states), but not outside this daily time window when such CNS dopaminergic activity is naturally low, produces widespread improvements in biomarkers of vascular oxidative stress that are associated with the amelioration of metabolic syndrome and reductions in MBH neuropeptides and gene expressions known to facilitate metabolic syndrome. These results of such circadian-timed bromocriptine treatment upon vascular pathology provide potential mechanisms for the observed marked reductions in adverse cardiovascular events with circadian-timed bromocriptine-QR therapy (similarly timed to the onset of daily waking as in this study) of type 2 diabetes subjects and warrant further investigations into related mechanisms and the potential application of such intervention to prediabetes and metabolic syndrome patients as well.


Asunto(s)
Bromocriptina/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Ritmo Circadiano , Dieta Alta en Grasa/efectos adversos , Antagonistas de Hormonas/farmacología , Hipertensión/complicaciones , Síndrome Metabólico/tratamiento farmacológico , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/patología , Resistencia a la Insulina , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/patología , Ratas , Ratas Endogámicas SHR , Ratas Sprague-Dawley
4.
Am J Physiol Endocrinol Metab ; 319(1): E133-E145, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32459527

RESUMEN

Bromocriptine mesylate treatment was examined in dogs fed a high fat diet (HFD) for 8 wk. After 4 wk on HFD, daily bromocriptine (Bromo; n = 6) or vehicle (CTR; n = 5) injections were administered. Oral glucose tolerance tests were performed before beginning HFD (OGTT1), 4 wk after HFD began (Bromo only), and after 7.5 wk on HFD (OGTT3). After 8 wk on HFD, clamp studies were performed, with infusion of somatostatin and intraportal replacement of insulin (4× basal) and glucagon (basal). From 0 to 90 min (P1), glucose was infused via peripheral vein to double the hepatic glucose load; and from 90 to 180 min (P2), glucose was infused via the hepatic portal vein at 4 mg·kg-1·min-1, with the HGL maintained at 2× basal. Bromo decreased the OGTT glucose ΔAUC0-30 and ΔAUC0-120 by 62 and 27%, respectively, P < 0.05 for both) without significantly altering the insulin response. Bromo dogs exhibited enhanced net hepatic glucose uptake (NHGU) compared with CTR (~33 and 21% greater, P1 and P2, respectively, P < 0.05). Nonhepatic glucose uptake (non-HGU) was increased ~38% in Bromo in P2 (P < 0.05). Bromo vs. CTR had higher (P < 0.05) rates of glucose infusion (36 and 30%) and non-HGU (~40 and 27%) than CTR during P1 and P2, respectively. In Bromo vs. CTR, hepatic 18:0/16:0 and 16:1/16:0 ratios tended to be elevated in triglycerides and were higher (P < 0.05) in phospholipids, consistent with a beneficial effect of bromocriptine on liver fat accumulation. Thus, bromocriptine treatment improved glucose disposal in a glucose-intolerant model, enhancing both NHGU and non-HGU.


Asunto(s)
Glucemia/efectos de los fármacos , Bromocriptina/farmacología , Dieta Alta en Grasa , Agonistas de Dopamina/farmacología , Intolerancia a la Glucosa/metabolismo , Hígado/efectos de los fármacos , Animales , Glucemia/metabolismo , Perros , Ácidos Grasos no Esterificados/metabolismo , Glucagón/efectos de los fármacos , Glucagón/metabolismo , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Glucógeno/metabolismo , Venas Hepáticas , Insulina/metabolismo , Ácido Láctico/metabolismo , Hígado/metabolismo , Vena Porta , Somatostatina
5.
Neuroscience ; 466: 125-147, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991623

RESUMEN

Whole body fuel metabolism and energy balance are controlled by an interactive brain neuronal circuitry involving multiple brain centers regulating cognition, circadian rhythms, reward, feeding and peripheral biochemical metabolism. The hypothalamic supramammillary nucleus (SuMN) comprises an integral node having connections with these metabolically relevant centers, and thus could be a key central coordination center for regulating peripheral energy balance. This study investigated the effect of chronically diminishing or increasing SuMN neuronal activity on body composition and peripheral fuel metabolism. The influence of neuronal activity level at the SuMN area on peripheral metabolism was investigated via chronic (2-4 week) direct SuMN treatment with agents that inhibit neuronal activity (GABAa receptor agonist [Muscimol] and AMPA plus NMDA glutamate receptor antagonists [CNQX plus dAP5, respectively]) in high fat fed animals refractory to the obesogenic effects of high fat diet. Such treatment reduced SuMN neuronal activity and induced metabolic syndrome, and likewise did so in animals fed low fat diet including inducement of glucose intolerance, insulin resistance, hyperinsulinemia, hyperleptinemia, and increased body weight gain and fat mass coupled with both increased food consumption and feed efficiency. Consistent with these results, circadian-timed activation of neuronal activity at the SuMN area with daily local infusion of glutamate receptor agonists, AMPA or NMDA at the natural daily peak of SuMN neuronal activity improved insulin resistance and obesity in high fat diet-induced insulin resistant animals. These studies are the first of their kind to identify the SuMN area as a novel brain locus that regulates peripheral fuel metabolism.


Asunto(s)
Intolerancia a la Glucosa , Resistencia a la Insulina , Animales , Composición Corporal , Peso Corporal , Dieta Alta en Grasa , Metabolismo Energético , Hipotálamo Posterior , Obesidad
6.
Diabetol Metab Syndr ; 13(1): 11, 2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33485386

RESUMEN

BACKGROUND: The daily peak in dopaminergic neuronal activity at the area of the biological clock (hypothalamic suprachiasmatic nuclei [SCN]) is diminished in obese/insulin resistant vs lean/insulin sensitive animals. The impact of targeted lesioning of dopamine (DA) neurons specifically at the area surrounding (and that communicate with) the SCN (but not within the SCN itself) upon glucose metabolism, adipose and liver lipid gene expression, and cardiovascular biology in normal laboratory animals has not been investigated and was the focus of this study. METHODS: Female Sprague-Dawley rats received either DA neuron neurotoxic lesion by bilateral intra-cannula injection of 6-hydroxydopamine (2-4 µg/side) or vehicle treatment at the area surrounding the SCN at 20 min post protriptyline ip injection (20 mg/kg) to protect against damage to noradrenergic and serotonergic neurons. RESULTS: At 16 weeks post-lesion relative to vehicle treatment, peri-SCN area DA neuron lesioning increased weight gain (34.8%, P < 0.005), parametrial and retroperitoneal fat weight (45% and 90% respectively, P < 0.05), fasting plasma insulin, leptin and norepinephrine levels (180%, 71%, and 40% respectively, P < 0.05), glucose tolerance test area under the curve (AUC) insulin (112.5%, P < 0.05), and insulin resistance (44%-Matsuda Index, P < 0.05) without altering food consumption during the test period. Such lesion also induced the expression of several lipid synthesis genes in adipose and liver and the adipose lipolytic gene, hormone sensitive lipase in adipose (P < 0.05 for all). Liver monocyte chemoattractant protein 1 (a proinflammatory protein associated with metabolic syndrome) gene expression was also significantly elevated in peri-SCN area dopaminergic lesioned rats. Peri-SCN area dopaminergic neuron lesioned rats were also hypertensive (systolic BP rose from 157 ± 5 to 175 ± 5 mmHg, P < 0.01; diastolic BP rose from 109 ± 4 to 120 ± 3 mmHg, P < 0.05 and heart rate increase from 368 ± 12 to 406 ± 12 BPM, P < 0.05) and had elevated plasma norepinephrine levels (40% increased, P < 0.05) relative to controls. CONCLUSIONS: These findings indicate that reduced dopaminergic neuronal activity in neurons at the area of and communicating with the SCN contributes significantly to increased sympathetic tone and the development of metabolic syndrome, without effect on feeding.

7.
Endocrinol Diabetes Metab ; 3(1): e00101, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31922028

RESUMEN

OBJECTIVE: Sympathetic nervous system (SNS) overactivity is a risk factor for insulin resistance and cardiovascular disease (CVD). We evaluated the impact of bromocriptine-QR, a dopamine-agonist antidiabetes medication, on elevated resting heart rate (RHR) (a marker of SNS overactivity in metabolic syndrome), blood pressure (BP) and the relationship between bromocriptine-QR's effects on RHR and HbA1c in type 2 diabetes subjects. DESIGN AND SUBJECTS: RHR and BP changes were evaluated in this post hoc analysis of data from a randomized controlled trial in 1014 type 2 diabetes subjects randomized to bromocriptine-QR vs placebo added to standard therapy (diet ± ≤2 oral antidiabetes medications) for 24 weeks without concomitant antihypertensive or antidiabetes medication changes, stratified by baseline RHR (bRHR). RESULTS: In subjects with bRHR ≥70 beats/min, bromocriptine-QR vs placebo reduced RHR by -3.4 beats/min and reduced BP (baseline 130/79; systolic, diastolic, mean arterial BP reductions [mm Hg]: -3.6 [P = .02], -1.9 [P = .05], -2.5 [P = .02]). RHR reductions increased with higher baseline HbA1c (bHbA1c) (-2.7 [P = .03], -5 [P = .002], -6.1 [P = .002] with bHbA1c ≤7, >7, ≥7.5%, respectively] in the bRHR ≥70 group and more so with bRHR ≥80 (-4.5 [P = .07], -7.8 [P = .015], -9.9 [P = .005]). Subjects with bRHR <70 had no significant change in RHR or BP. With bHbA1c ≥7.5%, %HbA1c reductions with bromocriptine-QR vs placebo were -0.50 (P = .04), -0.73 (P = .005) and -1.22 (P = .008) with bRHR <70, ≥70 and ≥80, respectively. With bRHR ≥70, the magnitude of bromocriptine-QR-induced RHR reduction was an independent predictor of bromocriptine-QR's HbA1c lowering effect. CONCLUSION: Bromocriptine-QR lowers elevated RHR with concurrent decrease in BP and hyperglycaemia. These findings suggest a potential sympatholytic mechanism contributing to bromocriptine-QR's antidiabetes effect and potentially its previously demonstrated effect to reduce CVD events.

8.
Mol Cell Biol ; 22(24): 8426-37, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12446763

RESUMEN

Developmentally regulated initiation of DNA synthesis was studied in the fly Sciara at locus II/9A. PCR analysis of nascent strands revealed an initiation zone that spans approximately 8 kb in mitotic embryonic cells and endoreplicating salivary glands but contracts to 1.2 to 2.0 kb during DNA amplification of DNA puff II/9A. Thus, the amplification origin occurs within the initiation zone used for normal replication. The initiation zone left-hand border is constant, but the right-hand border changes during development. Also, there is a shift in the preferred site for initiation of DNA synthesis during DNA amplification compared to that in preamplification stages. This is the first demonstration that once an initiation zone is defined in embryos, its borders and preferred replication start sites can change during development. Chromatin immunoprecipitation showed that the RNA polymerase II 140-kDa subunit occupies the promoter of gene II/9-1 during DNA amplification, even though intense transcription will not start until the next developmental stage. RNA polymerase II is adjacent to the right-hand border of the initiation zone at DNA amplification but not at preamplification, suggesting that it may influence the position of this border. These findings support a relationship between the transcriptional machinery and establishment of the replication initiation zone.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/genética , ADN/metabolismo , Dípteros/crecimiento & desarrollo , Dípteros/genética , Genes de Insecto , Animales , ADN/genética , ADN/aislamiento & purificación , Femenino , Amplificación de Genes , Conformación de Ácido Nucleico , Complejo de Reconocimiento del Origen , Reacción en Cadena de la Polimerasa , ARN Polimerasa II , Transcripción Genética
9.
BMC Endocr Disord ; 7: 3, 2007 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-17592632

RESUMEN

BACKGROUND: Cycloset is a quick-release formulation of bromocriptine mesylate, a dopamine agonist, which in animal models of insulin resistance and type 2 diabetes acts centrally to reduce resistance to insulin- mediated suppression of hepatic glucose output and tissue glucose disposal. In such animals, bromocriptine also reduces hepatic triglyceride synthesis and free fatty acid mobilization, manifesting decreases in both plasma triglycerides and free fatty acids. In clinical trials, morning administration of Cycloset either as monotherapy or adjunctive therapy to sulfonylurea or insulin reduces HbA1c levels relative to placebo by 0.55-1.2. Cycloset therapy also reduces plasma triglycerides and free fatty acid by approximately 25% and 20%, respectively, among those also receiving sulfonylurea therapies. The effects of once-daily morning Cycloset therapy on glycemic control and plasma lipids are demonstrable throughout the diurnal portion of the day (7 a.m. to 7 p.m.) across postprandial time points. METHODS/DESIGN: 3,095 individuals were randomized in a 2:1 ratio into a one year trial aimed to assess the safety and efficacy of Cycloset compared to placebo among individuals receiving a variety of treatments for type 2 diabetes. Eligibility criteria for this randomized placebo controlled trial included: age 30-80, HbA1c

10.
Postgrad Med ; 128(8): 761-769, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27687032

RESUMEN

OBJECTIVES: Type 2 diabetes mellitus (T2DM) is associated with a substantially increased risk of cardiovascular disease (CVD). Bromocriptine-QR (B-QR), a quick release sympatholytic dopamine D2 receptor agonist, is a FDA-approved therapy for T2DM which may provide CVD risk reduction. Metformin is considered to be an agent with a potential cardioprotective benefit. This large placebo controlled clinical study assessed the impact of B-QR addition to existing metformin therapy on CVD outcomes in T2DM subjects. METHODS: 1791 subjects (1208 B-QR; 583 placebo) on metformin ± another anti-diabetes therapy at baseline derived from the Cycloset Safety Trial, a 12-month, randomized, multicenter, placebo-controlled, double-blind study in T2DM, were included in this study. The primary CVD endpoint evaluated was treatment impact on CVD event rate, prespecified as a composite of time to first myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina/congestive heart failure. Impact on glycemic control was evaluated as a secondary analysis. RESULTS: The composite CVD end point occurred in 16/1208 B-QR treated (1.3%) and 18/583 placebo treated (3.1%) subjects resulting in a 55% CVD hazard risk reduction (intention-to-treat, Cox regression analysis; HR: 0.45 [0.23-0.88], p = 0.028). Kaplan-Meier curves demonstrated a significantly lower cumulative incidence rate of the CVD endpoint in the B-QR treatment group (Log-Rank p = 0.017). In subjects with poor glycemic control (HbA1c ≥ 7.5) at baseline, B-QR therapy relative to placebo resulted in a significant mean %HbA1c reduction of -0.59 at week 12 and -0.51 at week 52 respectively (p < 0.001 for both) and a 10 fold higher percent of subjects achieving HbA1c goal of ≤7% by week 52 (B-QR 30%, placebo 3%; p = 0.003). CONCLUSION: These findings suggest that in T2DM subjects on metformin, BQR therapy may represent an effective strategy for reducing CVD risk. Cycloset Safety Trial registration: ClinicalTrials.gov Identifier: NCT00377676.


Asunto(s)
Bromocriptina/administración & dosificación , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Agonistas de Dopamina/administración & dosificación , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Anciano , Glucemia , Enfermedades Cardiovasculares/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Método Doble Ciego , Quimioterapia Combinada , Femenino , Hemoglobina Glucada , Humanos , Hipoglucemiantes/administración & dosificación , Estimación de Kaplan-Meier , Masculino , Metformina/administración & dosificación , Persona de Mediana Edad , Factores de Riesgo
11.
Diabetol Metab Syndr ; 7: 61, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26273326

RESUMEN

[This corrects the article DOI: 10.1186/1758-5996-6-104.].

12.
J Diabetes Res ; 2015: 157698, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26060823

RESUMEN

BACKGROUND: Type 2 diabetes (T2DM) patients, including those in good glycemic control, have an increased risk of cardiovascular disease (CVD). Maintaining good glycemic control may reduce long-term CVD risk. However, other risk factors such as elevated vascular sympathetic tone and/or endothelial dysfunction may be stronger potentiators of CVD. This study evaluated the impact of bromocriptine-QR, a sympatholytic dopamine D2 receptor agonist, on progression of metabolic disease and CVD in T2DM subjects in good glycemic control (HbA1c ≤ 7.0%). METHODS: 1834 subjects (1219 bromocriptine-QR; 615 placebo) with baseline HbA1c ≤ 7.0% derived from the Cycloset Safety Trial (this trial is registered with ClinicalTrials.gov Identifier: NCT00377676), a 12-month, randomized, multicenter, placebo-controlled, double-blind study in T2DM, were evaluated. Treatment impact upon a prespecified composite CVD endpoint (first myocardial infarction, stroke, coronary revascularization, or hospitalization for angina/congestive heart failure) and the odds of losing glycemic control (HbA1c >7.0% after 52 weeks of therapy) were determined. RESULTS: Bromocriptine-QR reduced the CVD endpoint by 48% (intention-to-treat; HR: 0.52 [0.28-0.98]) and 52% (on-treatment analysis; HR: 0.48 [0.24-0.95]). Bromocriptine-QR also reduced the odds of both losing glycemic control (OR: 0.63 (0.47-0.85), p = 0.002) and requiring treatment intensification to maintain HbA1c ≤ 7.0% (OR: 0.46 (0.31-0.69), p = 0.0002). CONCLUSIONS: Bromocriptine-QR therapy slowed the progression of CVD and metabolic disease in T2DM subjects in good glycemic control.


Asunto(s)
Bromocriptina/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Agonistas de Dopamina/uso terapéutico , Hiperglucemia/tratamiento farmacológico , Anciano , Glucemia/análisis , Bromocriptina/administración & dosificación , Enfermedades Cardiovasculares/etiología , Preparaciones de Acción Retardada , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Progresión de la Enfermedad , Agonistas de Dopamina/administración & dosificación , Método Doble Ciego , Femenino , Humanos , Hiperglucemia/complicaciones , Hipoglucemiantes/uso terapéutico , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
13.
Diabetol Metab Syndr ; 6: 104, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25937836

RESUMEN

BACKGROUND: The hypertensive, pro-inflammatory, obese state is strongly coupled to peripheral and hepatic insulin resistance (in composite termed metabolic syndrome [MS]). Hepatic pro-inflammatory pathways have been demonstrated to initiate or exacerbate hepatic insulin resistance and contribute to fatty liver, a correlate of MS. Previous studies in seasonally obese animals have implicated an important role for circadian phase-dependent increases in hypothalamic dopaminergic tone in the maintenance of the lean, insulin sensitive condition. However, mechanisms driving this dopaminergic effect have not been fully delineated and the impact of such dopaminergic function upon the above mentioned parameters of MS, particularly upon key intra-hepatic regulators of liver inflammation and lipid and glucose metabolism have never been investigated. OBJECTIVE: This study therefore investigated the effects of timed daily administration of bromocriptine, a potent dopamine D2 receptor agonist, on a) ventromedial hypothalamic catecholamine activity, b) MS and c) hepatic protein levels of key regulators of liver inflammation and glucose and lipid metabolism in a non-seasonal model of MS - the hypertensive, obese SHR rat. METHODS: Sixteen week old SHR rats maintained on 14 hour daily photoperiods were treated daily for 16 days with bromocriptine (10 mg/kg, i.p.) or vehicle at 1 hour before light offset and, subsequent to blood pressure recordings on day 14, were then utilized for in vivo microdialysis of ventromedial hypothalamic catecholamine activity or sacrificed for the analyses of MS factors and regulators of hepatic metabolism. Normal Wistar rats served as wild-type controls for hypothalamic activity, body fat levels, and insulin sensitivity. RESULTS: Bromocriptine treatment significantly reduced ventromedial hypothalamic norepinephrine and serotonin levels to the normal range and systolic and diastolic blood pressures, retroperitoneal body fat level, plasma insulin and glucose levels and HOMA-IR relative to vehicle treated SHR controls. Such treatment also reduced plasma levels of C-reactive protein, leptin, and norepinephrine and increased that of plasma adiponectin significantly relative to SHR controls. Finally, bromocriptine treatment significantly reduced hepatic levels of several pro-inflammatory pathway proteins and of the master transcriptional activators of lipogenesis, gluconeogenesis, and free fatty acid oxidation versus control SHR rats. CONCLUSION: These findings indicate that in SHR rats, timed daily dopamine agonist treatment improves hypothalamic and neuroendocrine pathologies associated with MS and such neuroendocrine events are coupled to a transformation of liver metabolism potentiating a reduction of elevated lipogenic and gluconeogenic capacity. This liver effect may be driven in part by concurrent reductions in hyperinsulinemia and sympathetic tone as well as by reductions in intra-hepatic inflammation.

14.
Endocr Pract ; 18(6): 931-43, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23186965

RESUMEN

OBJECTIVE: To investigate the effect of Bromocriptine-QR on glycemic control in patients with type 2 diabetes whose glycemia is poorly controlled on one or two oral anti-diabetes agents. METHODS: Five hundred fifteen Type 2 Diabetes Mellitus (T2DM) subjects (ages 18 to 80 and average body mass index [BMI] of 32.7) with baseline HbA1c ≥ 7.5 and on one or two oral anti-diabetes (OAD) medications (metformin, sulfonylurea, and/or thiazolidinediones) were randomized 2:1 to bromocriptine-QR (1.6 to 4.8 mg/day) or placebo for a 24 week treatment period. Study investigators were allowed to adjust, if necessary, subject anti-diabetes medications during the study to attempt to achieve glycemic control in case of glycemic deterioration. The impact of bromocriptine-QR treatment intervention on glycemic control was assessed in subjects on any one or two OADs (ALL treatment category) (N = 515), or on metformin with or without another OAD (Met/OAD treatment category) (N = 356), or on metformin plus a sulfonylurea (Met/SU treatment category) (N = 245) 1) by examining the between group difference in change from baseline a) concomitant OAD medication changes during the study, and b) HbA1c and 2) by determining the odds of reaching HbA1c of ≤ 7.0% on bromocriptine-QR versus placebo. RESULTS: Significantly more patients (approximately 1.5 to 2-fold more; P<.05) intensified concomitant anti-diabetes medication therapy during the study in the placebo versus the bromocriptine-QR arm. In subjects that did not change the intensity of the baseline diabetes therapy (72%), and that were on any one or two OADs (ALL), or on metformin with or without another OAD (Met/OAD), or on metformin plus sulfonylurea (Met/SU), the HbA1c change for bromocriptine-QR versus placebo was -0.47 versus +0.22 (between group delta of -0.69, P<.0001), -0.55 versus +0.26 (between group delta of -0.81, P<.0001) and -0.63 versus +0.20 (between group delta of -0.83, P<.0001) respectively, after 24 weeks on therapy. The odds ratio of reaching HbA1c of ≤ 7.0% was 6.50, 12.03 and 11.45 (P<.0002) for these three groups, respectively. CONCLUSION: In T2DM subjects whose hyperglycemia is poorly controlled on one or two oral agents, bromocriptine-QR therapy for 24 weeks can provide significant added improvement in glycemic control relative to adding placebo.


Asunto(s)
Glucemia/metabolismo , Bromocriptina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Antagonistas de Hormonas/uso terapéutico , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Diabetes Mellitus Tipo 2/sangre , Método Doble Ciego , Quimioterapia Combinada , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Hiperglucemia/sangre , Estudios Longitudinales , Masculino , Metformina/uso terapéutico , Persona de Mediana Edad , Compuestos de Sulfonilurea/uso terapéutico , Insuficiencia del Tratamiento , Resultado del Tratamiento , Adulto Joven
16.
Diabetes Care ; 33(7): 1503-8, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20332352

RESUMEN

OBJECTIVE: Quick-release bromocriptine (bromocriptine-QR), a D2 dopamine receptor agonist, is indicated as a treatment for type 2 diabetes. The Cycloset Safety Trial, a 52-week, randomized, double-blind, multicenter trial, evaluated the overall safety and cardiovascular safety of this novel therapy for type 2 diabetes. RESEARCH DESIGN AND METHODS: A total of 3,095 patients with type 2 diabetes were randomized 2:1 to bromocriptine-QR or placebo in conjunction with the patient's usual diabetes therapy (diet controlled only or up to two antidiabetes medications, including insulin). The all-cause-safety end point was the occurrence of any serious adverse event (SAE), with a hazard ratio (HR) noninferiority margin of 1.5. In a prespecified analysis, the frequency of cardiovascular disease (CVD) events defined as a composite of myocardial infarction, stroke, coronary revascularization, and hospitalization for angina or congestive heart failure was evaluated using modified intent-to-treat analysis (clinicaltrials.gov, NCT00377676). RESULTS: In the bromocriptine-QR group, 176 (8.6%) people reported SAEs compared with 98 (9.6%) in the placebo group (HR 1.02 [96% one-sided CI 1.27]). Fewer people reported a CVD end point in the bromocriptine-QR group versus the placebo group (37 [1.8%] vs. 32 [3.2%], respecively) (HR 0.60 [95% two-sided CI 0.35-0.96]). Nausea was the most commonly reported adverse event in the bromocriptine-QR group. CONCLUSIONS: The frequency of SAEs was comparable between the treatment arms. Compared with patients in the placebo arm, fewer patients taking bromocriptine-QR experienced a cardiovascular end point.


Asunto(s)
Bromocriptina/administración & dosificación , Bromocriptina/efectos adversos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Agonistas de Dopamina/administración & dosificación , Agonistas de Dopamina/efectos adversos , Anciano , Enfermedades Cardiovasculares/epidemiología , Comorbilidad , Diabetes Mellitus Tipo 2/mortalidad , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Placebos , Factores de Riesgo , Conducta de Reducción del Riesgo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA