Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Magn Reson Imaging ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721871

RESUMEN

BACKGROUND: One of the main features of several metabolic disorders is dysregulation of hepatic glucose and lipid metabolism. Deuterium metabolic imaging (DMI) allows for assessing the uptake and breakdown of 2H-labeled substrates, giving specific insight into nutrient processing in healthy and diseased organs. Thus, DMI could be a useful approach for analyzing the differences in liver metabolism of healthy and diseased subjects to gain a deeper understanding of the alterations related to metabolic disorders. PURPOSE: Evaluating the feasibility of DMI as a tool for the assessment of metabolic differences in rodents with healthy and fatty livers (FLs). STUDY TYPE: Animal Model. POPULATION: 18 male Sprague Dawley rats on standard (SD, n = 9, healthy) and high-fat diet (HFD, n = 9, FL disease). FIELD STRENGTH/SEQUENCE: Phase-encoded 1D pulse-acquire sequence and anatomy co-registered phase-encoded 3D pulse-acquire chemical shift imaging for 2H at 9.4T. ASSESSMENT: Localized and nonlocalized liver spectroscopy was applied at eight time points over 104 minutes post injection. The obtained spectra were preprocessed and quantified using jMRUI (v7.0) and the resulting amplitudes translated to absolute concentration (mM) according to the 2H natural abundance water peak. STATISTICAL TESTS: Two-way repeated measures ANOVA were employed to assess between-group differences, with statistical significance at P < 0.05. RESULTS: DMI measurements demonstrated no significant difference (P = 0.98) in the uptake of [6,6'-2H2]glucose between healthy and impaired animals (AUCSD = 1966.0 ± 151.5 mM - minutes vs. AUCHFD = 2027.0 ± 167.6 mM·minutes). In the diseased group, the intrahepatic uptake of palmitic acid d-31 was higher (AUCHFD = 57.4 ± 17.0 mM·minutes, AUCSD = 33.3 ± 10.5 mM·minutes), but without statistical significance owing to substantial in-group variation (P = 0.73). DATA CONCLUSION: DMI revealed higher concentrations of palmitic acid in rats with FL disease and no difference in hepatic glucose concentration between healthy and impaired animals. Thus, DMI appears to be a useful tool for evaluating metabolism in rodents with FL disease. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.

2.
Diabetes Obes Metab ; 22(3): 290-302, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31608542

RESUMEN

AIMS: To investigate the mechanism of action of 55P0251, a novel multiflorine-derived substituted quinazolidine that augments insulin release and lowers blood glucose in rodents, but does not act via mechanisms addressed by any antidiabetic agent in clinical use. MATERIALS AND METHODS: Using male mice, we determined the effects of 55P0251 on glucose tolerance, insulin secretion from isolated islets and blood oxygen saturation, including head-to-head comparison of 55P0251 to its inverted enantiomer 55P0250, as well as to other anti-hyperglycaemic multiflorine derivatives discovered in our programme. RESULTS: 55P0251 was clearly superior to its inverted enantiomer in the glucose tolerance test (area under the curve: 11.3 mg/kg 55P0251, 1.19 ± 0.04 min*mol/L vs 55P0250, 1.80 ± 0.04 min*mol/L; P < .0001). For insulin release in vitro, this superiority became visible only under concomitant adrenergic background stimulation (glucose-stimulated insulin release, fmol*islet-1 *30 min-1 : without α2 -adrenoceptor agonist: 500 µmol/L 55P0251, 390 ± 34, vs 55P0250, 459 ± 40, nonsignificant; with α2 -adrenoceptor agonist: 250 µmol/L 55P0251, 138 ± 9, vs 55P0250, 21 ± 6; P < .0001). Since receptor binding assays suggested antagonism at α2A -adrenoceptors as a potential mechanism of action, we measured oxygen saturation in capillary blood from the tail as a surrogate of vasoconstriction, which supported α2 -antagonistic action in vivo (90 mg/kg 55P0251, 83 ± 3%, vs 55P0250, 57 ± 3%; P < .0001). Lack of association between glucose-lowering activities and α2A -adrenoceptor binding affinity arising from comparison of multiflorine derivatives was attributed to differences in their pharmacokinetic properties. CONCLUSIONS: Our findings suggest that 55P0251 and related multiflorine derivatives are to be categorized as α2 -adrenoceptor antagonists with potential to lower blood glucose by blocking α2A -adrenoceptors on pancreatic ß cells.


Asunto(s)
Glucemia , Insulina , Alcaloides , Animales , Insulina/metabolismo , Secreción de Insulina , Masculino , Ratones , Receptores Adrenérgicos alfa 2/metabolismo
3.
Diabetes Obes Metab ; 19(8): 1088-1096, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28211608

RESUMEN

AIMS: 55P0251 is a novel compound with blood glucose lowering activity in mice, which has been developed from a molecular backbone structure found in herbal remedies. We here report its basic pharmacological attributes and initial progress in unmasking the mode of action. MATERIALS AND METHODS: Pharmacokinetic properties of 55P0251 were portrayed in several species. First efforts to elucidate the glucose lowering mechanism in rodents included numerous experimental protocols dealing with glucose tolerance, insulin secretion from isolated pancreatic islets and comparison to established drugs. RESULTS: A single oral dose of 55P0251 improved glucose tolerance in mice with an ED50 between 1.5 and 2 mg/kg (reductions in areas under the curve, 1 mg/kg, -18%; 5 mg/kg, -30%; 27 mg/kg, -47%). Pharmacokinetic studies revealed attractive attributes, including a plasma half-life of approximately 3 hours and a bioavailability of approximately 58% in rats. 55P0251 amplified glucose stimulated insulin release from isolated mouse islets and improved glucose tolerance via increased insulin secretion in rats (increase in area under the insulin curve, +184%). Unlike sulfonylureas and glinides, 55P0251 hardly stimulated insulin release under basal conditions and did not induce hypoglycaemia in vivo, but it amplified the secretory response to glucose and other insulinotropic stimuli (KCl, glucagon-like peptide-1). Comparison to established anti-diabetic agents and examination of interaction with molecular targets (KATP channel, dipeptidyl peptidase-4, glucagon-like peptide-1 receptor) excluded molecular mechanisms addressed by presently marketed drugs. CONCLUSIONS: 55P0251 is a novel compound that potently counteracts hyperglycaemia in rodents via amplification of glucose-stimulated insulin release.


Asunto(s)
Alcaloides/uso terapéutico , Drogas en Investigación/uso terapéutico , Intolerancia a la Glucosa/tratamiento farmacológico , Hiperglucemia/prevención & control , Incretinas/uso terapéutico , Administración Oral , Alcaloides/administración & dosificación , Alcaloides/farmacocinética , Alcaloides/farmacología , Animales , Disponibilidad Biológica , Glucemia/análisis , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Drogas en Investigación/administración & dosificación , Drogas en Investigación/farmacocinética , Drogas en Investigación/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/metabolismo , Semivida , Hipoglucemiantes/farmacología , Incretinas/administración & dosificación , Incretinas/farmacocinética , Incretinas/farmacología , Insulina/agonistas , Insulina/sangre , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Canales KATP/antagonistas & inhibidores , Canales KATP/metabolismo , Masculino , Tasa de Depuración Metabólica , Ratones Endogámicos C57BL , Ratas Sprague-Dawley
4.
Clin Nutr ; 42(10): 1839-1848, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625314

RESUMEN

BACKGROUND AND AIMS: The worldwide prevalence of Non-alcoholic Fatty Liver Disease (NAFLD) raises concerns about associated risk factors, such as obesity and type 2 Diabetes Mellitus, for leading causes of disability and death. Besides Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS), functional imaging with Positron Emission Tomography (PET) could contribute to a deeper understanding of the pathophysiology of NAFLD. Here we describe a novel approach using the PET tracer [18F]FTHA, which is an analog of long-chain free fatty acids (FFA) and is taken up by tissues to enter mitochondria or to be incorporated into complex lipids for further export as very-low-density lipoprotein (VLDL). METHODS: Male Sprague Dawley rats, after 6 weeks on a high-fat diet (HFD), were used as a model of diet induced NAFLD, while a standard diet (SD) served as a control group. Liver fat was estimated by MR spectroscopy at a 9.4 T system for phenotyping. To measure hepatic FFA uptake, rats underwent 60 min dynamic [18F]FTHA-PET scans after unrestricted access to food (HFD: n = 6; SD: n = 6) or overnight (≤16h) fasting (HFD: n = 6; SD: n = 5). FFA removal was assessed from incorporated 18F-residual in de novo synthesized VLDL out of plasma. RESULTS: MRS of the liver confirmed the presence of NAFLD (>5.6% fat). Under non-fasting conditions, hepatic [18F]FTHA uptake was significantly increased in NAFLD: SUVmean (p = 0.03) within [0; 60] min interval, SUVmean (p = 0.01) and SUVmax (p = 0.03) within [30; 60] min interval. SUVs for hepatic uptake under fasting conditions were not significantly different between the groups. Analysis of FFA removal demonstrated elevated values of 18F-residue in the VLDL plasma fraction of the healthy group compared to the NAFLD (p = 0.0569). CONCLUSION: Our novel approach for assessing FFA metabolism using [18F]FTHA demonstrated differences in the hepatic FFA uptake and FFA incorporation into VLDL between healthy and NAFLD rats. [18F]FTHA-PET could be used to study metabolic disturbances involved in the progression of NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratas , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácidos Grasos no Esterificados , Lipoproteínas VLDL/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tomografía Computarizada por Rayos X , Ratas Sprague-Dawley , Tomografía de Emisión de Positrones , Hígado/diagnóstico por imagen , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos
5.
Biomed Pharmacother ; 158: 114089, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36538862

RESUMEN

BACKGROUND: Combining mouse experiments with big data analysis of the Austrian population, we investigated the association between high-dose statin treatment and bone quality. METHODS: The bone microarchitecture of the femur and vertebral body L4 was measured in male and ovariectomized female mice on a high-fat diet containing simvastatin (1.2 g/kg). A sex-specific matched big data analysis of Austrian health insurance claims using multiple logistic regression models was conducted (simvastatin 60-80 mg/day vs. controls; males: n = 138,666; females: n = 155,055). RESULTS: High-dose simvastatin impaired bone quality in male and ovariectomized mice. In the trabecular femur, simvastatin reduced bone volume (µm3: ♂, 213 ± 15 vs. 131 ± 7, p < 0.0001; ♀, 66 ± 7 vs. 44 ± 5, p = 0.02) and trabecular number (1/mm: ♂, 1.88 ± 0.09 vs. 1.27 ± 0.06, p < 0.0001; ♀, 0.60 ± 0.05 vs. 0.43 ± 0.04, p = 0.01). In the cortical femur, bone volume (mm3: ♂, 1.44 ± 0.03 vs. 1.34 ± 0.03, p = 0.009; ♀, 1.33 ± 0.03 vs. 1.12 ± 0.03, p = 0.0002) and cortical thickness were impaired (µm: ♂, 211 ± 4 vs. 189 ± 4, p = 0.0004; ♀, 193 ± 3 vs. 169 ± 3, p < 0.0001). Similar impairments were found in vertebral body L4. Simvastatin-induced changes in weight or glucose metabolism were excluded as mediators of deteriorations in bone quality. Results from mice were supported by a matched cohort analysis showing an association between high-dose simvastatin and increased risk of osteoporosis in patients (♂, OR: 5.91, CI: 3.17-10.99, p < 0.001; ♀, OR: 4.16, CI: 2.92-5.92, p < 0.001). CONCLUSION: High-dose simvastatin dramatically reduces bone quality in obese male and ovariectomized female mice, suggesting that direct drug action accounts for the association between high dosage and increased risk of osteoporosis as observed in comparable human cohorts. The underlying pathophysiological mechanisms behind this relationship are presently unknown and require further investigation.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Osteoporosis , Humanos , Masculino , Femenino , Ratones , Animales , Simvastatina/farmacología , Densidad Ósea , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Huesos , Ovariectomía/efectos adversos
6.
Metabolism ; 128: 154956, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953917

RESUMEN

BACKGROUND AND PURPOSE: Despite extensive efforts and a plethora of suggested targets and pathways, the mechanism via which metformin lowers blood glucose remains obscure. Obstacles that hamper progress in understanding metformin action include unexplained discrepancies between preclinical models and patients. PROCEDURES: We treated obese male C57BL/6J mice fed high fat diet with metformin provided in the form of a single dose, daily intraperitoneal injections, admixture to drinking water, or continuous infusion via intraperitoneal minipumps. RESULTS: The results suggest several superimposed components, via which metformin acts on blood glucose. These include (i) marked glucose lowering shortly after dosing, which fades rapidly with the decrease in metformin concentrations in plasma and liver, but could, at least to a major extent, rely on the mechanism also accounting for metformin's therapeutic action in humans; (ii) indirect action via reduced weight gain, which might be responsible for glucose lowering observed in many previous rodent studies; and (iii) deterioration of glucose homeostasis by prolonged treatment that can be unmasked by avoidance of dosing shortly before measuring blood glucose in combination with exclusion of weight-related actions via restricted feeding of the control mice. CONCLUSIONS: Our work raises the question whether elucidation of metformin's anti-diabetic mechanism(s) in rodent experiments may in the past have been hampered by failure to mimic clinical circumstances, as caused by insufficient consideration of pharmacokinetics and multiplicity of involved actions.


Asunto(s)
Hipoglucemiantes/farmacología , Metformina/farmacología , Animales , Glucemia/análisis , Homeostasis/efectos de los fármacos , Hígado/metabolismo , Masculino , Metformina/administración & dosificación , Metformina/farmacocinética , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo
7.
Cell Metab ; 34(11): 1719-1731.e5, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36220067

RESUMEN

Recombinant human leptin (metreleptin) reduces hepatic lipid content in patients with lipodystrophy and overweight patients with non-alcoholic fatty liver disease and relative hypoleptinemia independent of its anorexic action. In rodents, leptin signaling in the brain increases very-low-density lipoprotein triglyceride (VLDL-TG) secretion and reduces hepatic lipid content via the vagus nerve. In this randomized, placebo-controlled crossover trial (EudraCT Nr. 2017-003014-22), we tested whether a comparable mechanism regulates hepatic lipid metabolism in humans. A single metreleptin injection stimulated hepatic VLDL-TG secretion (primary outcome) and reduced hepatic lipid content in fasted, lean men (n = 13, age range 20-38 years) but failed to do so in metabolically healthy liver transplant recipients (n = 9, age range 26-62 years) who represent a model for hepatic denervation. In an independent cohort of lean men (n = 10, age range 23-31 years), vagal stimulation by modified sham feeding replicated the effects of metreleptin on VLDL-TG secretion. Therefore, we propose that leptin has anti-steatotic properties that are independent of food intake by stimulating hepatic VLDL-TG export via a brain-vagus-liver axis.


Asunto(s)
Leptina , Enfermedad del Hígado Graso no Alcohólico , Masculino , Humanos , Adulto Joven , Adulto , Leptina/farmacología , Leptina/metabolismo , Lipoproteínas VLDL/metabolismo , Triglicéridos/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Nervio Vago/metabolismo
8.
Am J Physiol Cell Physiol ; 300(6): C1386-92, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21346152

RESUMEN

The pharmacology of thiazolidinediones (TZDs) seems to be driven not only by activation of peroxisome proliferator-activated receptor-γ (PPARγ), but also by PPARγ-independent effects on mitochondrial function and cellular fuel handling. This study portrayed such actions of the novel hydrophilic TZD compound BLX-1002 and compared them to those of conventional TZDs. Mitochondrial function and fuel handling were examined in disrupted rat muscle mitochondria, intact rat liver mitochondria, and specimens of rat skeletal muscle. BLX-1002 was superior to most other TZDs as an inhibitor of respiratory complex 1 in disrupted mitochondria, but had less effect than any other TZD on oxygen consumption by intact mitochondria and on fuel metabolism by intact tissue. The latter finding was obviously related to the hydrophilic properties of BLX-1002, because high potentials of individual TZDs to shift muscle fuel metabolism from the aerobic into the anaerobic pathway were associated with high ClogP values indicative of high lipophilicity and low hydrophilicity (e.g., % increase in lactate release induced by 10 µmol/l of respective compound: BLX-1002, ClogP 0.39, +10 ± 8%, not significant; pioglitazone, ClogP 3.53, +68 ± 12%, P < 0.001; troglitazone, ClogP 5.58, +157 ± 14%, P < 0.001). The observed specific properties of BLX-1002 could result from relatively strong direct affinity to an unknown mitochondrial target, but limited access to this target. Results suggest 1) that impairment of mitochondrial function and increased anaerobic fuel metabolism are unlikely to account for PPARγ-independent glucose lowering by BLX-1002, and 2) that higher lipophilicity of an individual TZD is associated with stronger acceleration of anaerobic glycolysis.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Tiazolidinedionas/farmacología , Animales , Respiración de la Célula/efectos de los fármacos , Masculino , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
9.
PLoS One ; 16(11): e0260501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34818373

RESUMEN

The aim of this study was to investigate whether the lack of signal transducer and activator of transcription 5 (STAT5) in mature adipocytes of obese mice (Stat5Adipoq mice) improves glucose and lipid metabolism as previously observed in lean mice. Male Stat5Adipoq mice and their wild type (WT) littermates were fed high-fat diet (HFD). Effects of adipocyte STAT5 deficiency on adiposity as well as on glucose and lipid metabolism were determined under ad libitum feeding and after weight loss induced by calorie restriction. Compared to WT mice, obese Stat5Adipoq mice showed modestly accelerated weight gain and blunted depletion of fat stores under calorie restriction (reduction in % body fat after 3 weeks: WT, -9.3±1.1, vs Stat5Adipoq, -5.9±0.8, p = 0.04). No differences were observed between Stat5Adipoq and WT mice with regard to parameters of glucose and lipid metabolism including basal glycaemia, glucose tolerance, and plasma triglycerides. In conclusion, STAT5 deficiency in the adipocyte of HFD-fed obese mice was associated with increased fat accumulation. In contrast to previous findings in lean mice, however, lipid accumulation was not associated with any improvement in glucose and lipid metabolism. Our results do not support adipocyte STAT5 as a promising target for the treatment of obesity-associated metabolic derangements.


Asunto(s)
Adipocitos/metabolismo , Glucemia/metabolismo , Obesidad/genética , Factor de Transcripción STAT5/genética , Adiposidad , Animales , Glucemia/genética , Eliminación de Gen , Metabolismo de los Lípidos , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Factor de Transcripción STAT5/metabolismo
10.
Ann N Y Acad Sci ; 1494(1): 70-86, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33502798

RESUMEN

Although extensive research on brown adipose tissue (BAT) has stimulated optimism in the battle against obesity and diabetes, BAT physiology and organ crosstalk are not fully understood. Besides BAT, melanin-concentrating hormone (MCH) and its receptor (MCHR1) play an important role in energy homeostasis. Because of the link between hypothalamic MCH neurons and sympathetic BAT activation via ß-adrenoceptors, we investigated the expression and physiological role of the MCHR1 in BAT. MCHR1 was detected in rodent and human BAT with RT-qPCR and western blot analyses. In vivo imaging in rats used the glucose analog [18 F]FDG and the MCHR1-tracer [11 C]SNAP-7941. We found that the ß3-adrenoceptor (ADRB3) agonist CL316,243 increased [11 C]SNAP-7941 uptake in BAT. Additionally, a pharmacological concentration of SNAP-7941-a low-affinity ADRB3 ligand-stimulated [18 F]FDG uptake, reflecting BAT activation. In cultured human adipocytes, CL316,243 induced MCHR1 expression, further supporting a direct interaction between MCHR1 and ADRB3. These findings characterized MCHR1 expression in rodent and human BAT for the first time, including in vitro and in vivo data demonstrating a link between MCHR1 and the ß3-adrenergic system. The presence of MCHR1 in BAT emphasizes the role of BAT in energy homeostasis and may help uncover treatment approaches for obesity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Receptores de la Hormona Hipofisaria/metabolismo , Animales , Fluorodesoxiglucosa F18/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley
11.
JCI Insight ; 5(5)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32106111

RESUMEN

Patients with active acromegaly (ACRO) exhibit low hepatocellular lipids (HCL), despite pronounced insulin resistance (IR). This contrasts the strong association of IR with nonalcoholic fatty liver disease in the general population. Since low HCL levels in ACRO might be caused by changes in oxidative substrate metabolism, we investigated mitochondrial activity and plasma metabolomics/lipidomics in active ACRO. Fifteen subjects with ACRO and seventeen healthy controls, matched for age, BMI, sex, and body composition, underwent 31P/1H-7-T MR spectroscopy of the liver and skeletal muscle as well as plasma metabolomic profiling and an oral glucose tolerance test. Subjects with ACRO showed significantly lower HCL levels, but the ATP synthesis rate was significantly increased compared with that in controls. Furthermore, a decreased ratio of unsaturated-to-saturated intrahepatocellular fatty acids was found in subjects with ACRO. Within assessed plasma lipids, lipidomics, and metabolomics, decreased carnitine species also indicated increased mitochondrial activity. We therefore concluded that excess of growth hormone (GH) in humans counteracts HCL accumulation by increased hepatic ATP synthesis. This was accompanied by a decreased ratio of unsaturated-to-saturated lipids in hepatocytes and by a metabolomic profile, reflecting the increase in mitochondrial activity. Thus, these findings help to better understanding of GH-regulated antisteatotic pathways and provide a better insight into potentially novel therapeutic targets for treating NAFLD.


Asunto(s)
Acromegalia/metabolismo , Adenosina Trifosfato/biosíntesis , Metabolismo de los Lípidos , Hígado/metabolismo , Adulto , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo
12.
Am J Physiol Endocrinol Metab ; 297(3): E785-92, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19622787

RESUMEN

Two mechanisms have been proposed for the modulation of skeletal muscle glucose metabolism by amino acids. Whereas studies on humans and cultured cells suggested acute insulin desensitization via mammalian target of rapamycin (mTOR) and its downstream target p70 S6 kinase (S6K), investigations using native specimens of rat muscle hinted at impairment of glucose oxidation by competition for mitochondrial oxidation. To better understand these seemingly contradictory findings, we explored the effects of high concentrations of mixed amino acids on fuel metabolism and S6K activity in freshly isolated specimens of rat skeletal muscle. In this setting, increasing concentrations of amino acids dose-dependently reduced the insulin-stimulated rates of CO(2) production from glucose and palmitate (decrease in glucose oxidation induced by addition of 5.5, 11, 22, and 44 mmol/l amino acids:--16 +/- 3, -25 +/- 7, -44 +/- 4, -62 +/- 4%; P < 0.02 each). This effect could not be attributed to insulin desensitization, because it was not accompanied by any reduction of insulin-stimulated glucose transport [+12 +/- 16, +17 +/- 22, +21 +/- 33, +13 +/- 12%; all nonsignificant (NS)] or glycogen synthesis (+1 +/- 6, -5 +/- 6, -9 +/- 8, +6 +/- 5%; all NS) and because it persisted without insulin stimulation. Abrogation of S6K activity by the mTOR blocker rapamycin failed to counteract amino acid-induced inhibition of glucose and palmitate oxidation, which therefore was obviously independent of mTOR/S6K signaling (decrease in glucose oxidation by addition of 44 mmol/l amino acids: without rapamycin, -60 +/- 4%; with rapamycin, -50 +/- 13%; NS). We conclude that amino acids can directly affect muscle glucose metabolism via two mechanisms, mTOR/S6K-mediated insulin desensitization and mitochondrial substrate competition, with the latter predominating in isolated rat muscle.


Asunto(s)
Aminoácidos/farmacología , Glucosa/metabolismo , Insulina/farmacología , Músculo Esquelético/efectos de los fármacos , Proteínas Quinasas/fisiología , Proteínas Quinasas S6 Ribosómicas/fisiología , Animales , Células Cultivadas , Medios de Cultivo/farmacología , Activación Enzimática/efectos de los fármacos , Ácidos Grasos/metabolismo , Masculino , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Técnicas de Cultivo de Órganos , Oxidación-Reducción/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR
13.
Nat Commun ; 10(1): 2717, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222048

RESUMEN

Hepatic steatosis develops when lipid influx and production exceed the liver's ability to utilize/export triglycerides. Obesity promotes steatosis and is characterized by leptin resistance. A role of leptin in hepatic lipid handling is highlighted by the observation that recombinant leptin reverses steatosis of hypoleptinemic patients with lipodystrophy by an unknown mechanism. Since leptin mainly functions via CNS signaling, we here examine in rats whether leptin regulates hepatic lipid flux via the brain in a series of stereotaxic infusion experiments. We demonstrate that brain leptin protects from steatosis by promoting hepatic triglyceride export and decreasing de novo lipogenesis independently of caloric intake. Leptin's anti-steatotic effects are generated in the dorsal vagal complex, require hepatic vagal innervation, and are preserved in high-fat-diet-fed rats when the blood brain barrier is bypassed. Thus, CNS leptin protects from ectopic lipid accumulation via a brain-vagus-liver axis and may be a therapeutic strategy to ameliorate obesity-related steatosis.


Asunto(s)
Leptina/metabolismo , Hígado/metabolismo , Bulbo Raquídeo/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Triglicéridos/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Infusiones Intraventriculares , Inyecciones Intraventriculares , Leptina/administración & dosificación , Lipogénesis/fisiología , Lipoproteínas VLDL , Hígado/inervación , Masculino , Enfermedad del Hígado Graso no Alcohólico/etiología , Polietilenglicoles/administración & dosificación , Ratas , Ratas Sprague-Dawley , Técnicas Estereotáxicas , Simpatectomía , Nervio Vago/fisiología , Nervio Vago/cirugía
14.
J Pharmacol Exp Ther ; 326(1): 323-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18445783

RESUMEN

Zucker diabetic fatty (ZDF) rats are a standard animal model for the study of type 2 diabetes and for pharmacological characterization of insulin-sensitizing drugs. To analyze the age-dependent development of their metabolic derangements and the associated changes in their responses to treatment with the insulin sensitizer pioglitazone, groups of 7, 10.5, or 15.5-week-old ZDF rats were treated orally with vehicle or pioglitazone (12 mg/kg/day). Metabolic parameters including circulating concentrations of glucose, insulin, lipids, and adiponectin as well as body weight, tissue glycogen content, and the activity of p70S6 kinase in skeletal muscle were determined. Blood glucose of ZDF rats rose steeply from 5.9 +/- 0.4 to 23.7 +/- 0.5 mM between 7 and 13 weeks of age and then reached a new steady state, which was associated with increased tissue glycogen content (in 15-week-old ZDF rats versus lean littermates: skeletal muscle, 18.0 +/- 0.9 versus 10.5 +/- 1.4 micromol/g; liver, 181 +/- 6 versus 109 +/- 14 micromol/g; both p < 0.001). Early intervention with pioglitazone at 7 weeks of age fully prevented the development of hyperglycemia (blood glucose, 6.4 +/- 0.4 versus 18.7 +/- 1.5 mM after 5.5 weeks of treatment), which was accompanied by a 40% (p = 0.01) reduction of the activity of p70S6 kinase in skeletal muscles. These beneficial effects of pioglitazone were progressively lost, if treatment was initiated at later stages of disease development. Thus, ZDF rats are suitable for preclinical characterization of insulin-sensitizing thiazolidinediones in many aspects, but several important differences versus human type 2 diabetes exist and are to be considered in the use of this animal model.


Asunto(s)
Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/prevención & control , Tiazolidinedionas/uso terapéutico , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Pioglitazona , Ratas , Ratas Zucker , Tiazolidinedionas/farmacología
15.
Artículo en Inglés | MEDLINE | ID: mdl-30210452

RESUMEN

Blood glucose and the prevalence of diabetes are lower in mountain than lowland dwellers, which could among other factors be due to reduced oxygen availability. To investigate metabolic adaptations to life under hypoxia, male mice on high fat diet (HFD) were continuously maintained at 10% O2. At variance to preceding studies, the protocol was designed to dissect direct metabolic effects from such mediated indirectly via hypoxia-induced reductions in appetite and weight gain. This was achieved by two separate control groups on normal air, one with free access to HFD, and one fed restrictedly in order to obtain a weight curve matching that of hypoxia-exposed mice. Comparable body weight in restrictedly fed and hypoxic mice was achieved by similar reductions in calorie intake (-22%) and was associated with parallel effects on body composition as well as on circulating insulin, leptin, FGF-21, and adiponectin. Whereas the effects of hypoxia on the above parameters could thus be attributed entirely to blunted weight gain, hypoxia improved glucose homeostasis in part independently of body weight (fasted blood glucose, mmol/l: freely fed control, 10.2 ± 0.7; weight-matched control, 8.0 ± 0.3; hypoxia, 6.8 ± 0.2; p < 0.007 each; AUC in the glucose tolerance test, mol/l*min: freely fed control, 2.54 ± 0.15; weight-matched control, 1.86 ± 0.08; hypoxia, 1.67 ± 0.05; p < 0.05 each). Although counterintuitive to lowering of glycemia, insulin sensitivity appeared to be impaired in animals adapted to hypoxia: In the insulin tolerance test, hypoxia-treated mice started off with lower glycaemia than their weight-matched controls (initial blood glucose, mmol/l: freely fed control, 11.5 ± 0.7; weight-matched control, 9.4 ± 0.3; hypoxia, 8.1 ± 0.2; p < 0.02 each), but showed a weaker response to insulin (final blood glucose, mmol/l: freely fed control, 7.0 ± 0.3; weight-matched control, 4.5 ± 0.2; hypoxia, 5.5 ± 0.3; p < 0.01 each). Furthermore, hypoxia weight-independently reduced hepatic steatosis as normalized to total body fat, suggesting a shift in the relative distribution of triglycerides from liver to fat (mg/g liver triglycerides per g total fat mass: freely fed control, 10.3 ± 0.6; weight-matched control, 5.6 ± 0.3; hypoxia, 4.0 ± 0.2; p < 0.0004 each). The results show that exposure of HFD-fed mice to continuous hypoxia leads to a unique metabolic phenotype characterized by improved glucose homeostasis along with evidence for impaired rather than enhanced insulin sensitivity.

16.
Eur J Pharmacol ; 798: 77-84, 2017 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-28108376

RESUMEN

Emodin is found in remedies from Traditional Chinese Medicine. Since antihyperglycaemic action was observed in rodents, non-scientific sources advertise emodin intake as a natural cure for diabetes. Emodin was admixed to high fat-food of obese mice at two doses (2 and 5g/kg; daily emodin uptake 103 and 229mg/kg). Comparison was made to ad libitum fed and to food restricted control groups, the latter showing the same weight gain as the corresponding emodin-treated groups. Emodin blunted food intake by 6% and 20% for the low and high dose, which was accompanied by proportionate reductions in weight gain. Emodin reduced blood glucose relative to freely feeding controls, but comparison to weight-matched controls unmasked deterioration, rather than improvement, of basal glycaemia (mmol/l: fed ad libitum, 9.5±0.4; low emodin, 9.4±0.3, weight-matched, 8.2±0.3; high emodin, 7.2±0.4, weight-matched, 6.1±0.3; P<0.01, emodin vs weight-matched) and glucose tolerance (area under the curve, min*mol/l: fed ad libitum, 2.01±0.08; low emodin, 1.97±0.12, weight-matched, 1.75±0.03; high emodin, 1.89±0.07, weight-matched, 1.65±0.05; P<0.0002, emodin vs weight-matched). An insulin tolerance test suggested insulin desensitisation by prolonged emodin treatment. Furthermore, a single oral emodin dose did not affect glucose tolerance in obese mice, whereas intravenous injection in rats suggested a potential of emodin to acutely impair insulin release. Our results show that the antihyperglycaemic action of emodin as well as associated biochemical alterations could be the mere consequences of a spoilt appetite. Published claims of antidiabetic potential via other mechanisms evoke the danger of misuse of natural remedies by diabetic patients.


Asunto(s)
Glucemia/metabolismo , Emodina/farmacología , Hipoglucemiantes/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Animales , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Emodina/sangre , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/sangre , Insulina/sangre , Resistencia a la Insulina , Masculino , Ratones , Obesidad/sangre , Obesidad/metabolismo , Obesidad/patología , Ratas
17.
J Clin Endocrinol Metab ; 102(4): 1325-1332, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28323986

RESUMEN

CONTEXT: Nonalcoholic fatty liver disease and elevated circulating branched-chain amino acids (BCAAs) are common characteristics of obesity and type 2 diabetes. In rodents, brain insulin signaling controls both hepatic triglyceride secretion and BCAA catabolism. Whether brain insulin signaling controls similar metabolic pathways in humans is unknown. OBJECTIVE: Here we assessed if intranasal insulin, a method to preferentially deliver insulin to the central nervous system, is able to modulate hepatic lipid content and plasma BCAAs in humans. DESIGN/SETTING: We conducted a randomized, double-blind, placebo-controlled trial at the Medical University of Vienna. PARTICIPANTS/INTERVENTION: We assessed if a chronic 4-week intranasal insulin treatment (40 IU, 4 times daily) reduces hepatic triglyceride content and circulating BCAAs in 20 healthy male volunteers. MAIN OUTCOME MEASURES: Hepatic lipid content was assessed noninvasively by 1H-magnetic resonance spectroscopy, and BCAAs were measured by gas chromatography mass spectrometry at defined time points during the study. RESULTS: Chronic intranasal insulin treatment did not alter body weight, body mass index, and hepatic lipid content but reduced circulating BCAA levels. CONCLUSIONS: These findings support the notion that brain insulin controls BCAA metabolism in humans. Thus, brain insulin resistance could account at least in part for the elevated BCAA levels observed in the insulin-resistant state.


Asunto(s)
Aminoácidos de Cadena Ramificada/sangre , Insulina/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Administración Intranasal , Adulto , Método Doble Ciego , Regulación hacia Abajo , Esquema de Medicación , Voluntarios Sanos , Humanos , Insulina/efectos adversos , Lípidos/análisis , Hígado/química , Masculino , Placebos
18.
EJNMMI Res ; 6(1): 31, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27033361

RESUMEN

BACKGROUND: The melanin-concentrating hormone receptor 1 (MCHR1), which is highly expressed in the lateral hypothalamus, plays a key role in energy homeostasis, obesity and other endocrine diseases. Hence, there is a major interest in in vivo imaging of this receptor. A PET tracer would allow non-invasive in vivo visualization and quantification of the MCHR1. The aim of the study was the ex vivo evaluation of the MCHR1 ligand [(18)F]FE@SNAP as a potential PET tracer for the MCHR1. METHODS: [(18)F]FE@SNAP was injected directly into the jugular vein of awake naïve rats for ex vivo brain autoradiography, biodistribution and additional blood metabolite analysis. Blocking experiments were conducted using the unlabeled MCHR1 ligand SNAP-7941. RESULTS: A high uptake of [(18)F]FE@SNAP was observed in the lateral hypothalamus and the ventricular system. Both regions were significantly blocked by SNAP-7941. Biodistribution evinced the highest uptake in the kidneys, adrenals, lung and duodenum. Specific blocking with SNAP-7941 led to a significant tracer reduction in the heart and adrenals. In plasma samples, 47.73 ± 6.1 % of a hydrophilic radioactive metabolite was found 45 min after tracer injection. CONCLUSIONS: Since [(18)F]FE@SNAP uptake was significantly blocked in the lateral hypothalamus, there is strong evidence that [(18)F]FE@SNAP is a highly suitable agent for specific MCHR1 imaging in the central nervous system. Additionally, this finding is supported by the specific blocking in the ventricular system, where the MCHR1 is expressed in the ependymal cells. These findings suggest that [(18)F]FE@SNAP could serve as a useful imaging and therapy monitoring tool for MCHR1-related pathologies.

19.
Diabetes ; 65(6): 1511-20, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26861781

RESUMEN

Hepatic steatosis is common in obesity and insulin resistance and results from a net retention of lipids in the liver. A key mechanism to prevent steatosis is to increase secretion of triglycerides (TG) packaged as VLDLs. Insulin controls nutrient partitioning via signaling through its cognate receptor in peripheral target organs such as liver, muscle, and adipose tissue and via signaling in the central nervous system (CNS) to orchestrate organ cross talk. While hepatic insulin signaling is known to suppress VLDL production from the liver, it is unknown whether brain insulin signaling independently regulates hepatic VLDL secretion. Here, we show that in conscious, unrestrained male Sprague Dawley rats the infusion of insulin into the third ventricle acutely increased hepatic TG secretion. Chronic infusion of insulin into the CNS via osmotic minipumps reduced the hepatic lipid content as assessed by noninvasive (1)H-MRS and lipid profiling independent of changes in hepatic de novo lipogenesis and food intake. In mice that lack the insulin receptor in the brain, hepatic TG secretion was reduced compared with wild-type littermate controls. These studies identify brain insulin as an important permissive factor in hepatic VLDL secretion that protects against hepatic steatosis.


Asunto(s)
Encéfalo/metabolismo , Insulina/fisiología , Hígado/metabolismo , Transducción de Señal/fisiología , Triglicéridos/metabolismo , Animales , Hígado Graso/fisiopatología , Lipoproteínas VLDL/metabolismo , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
20.
Diabetes ; 53(4): 1052-9, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15047621

RESUMEN

Metformin and thiazolidinediones (TZDs) are believed to exert their antidiabetic effects via different mechanisms. As evidence suggests that both impair cell respiration in vitro, this study compared their effects on mitochondrial functions. The activity of complex I of the respiratory chain, which is known to be affected by metformin, was measured in tissue homogenates that contained disrupted mitochondria. In homogenates of skeletal muscle, metformin and TZDs reduced the activity of complex I (30 mmol/l metformin, -15 +/- 2%; 100 micromol/l rosiglitazone, -54 +/- 7; and 100 micromol/l pioglitazone, -12 +/- 4; P < 0.05 each). Inhibition of complex I was confirmed by reduced state 3 respiration of isolated mitochondria consuming glutamate + malate as substrates for complex I (30 mmol/l metformin, -77 +/- 1%; 100 micromol/l rosiglitazone, -24 +/- 4; and 100 micromol/l pioglitazone, -18 +/- 5; P < 0.05 each), whereas respiration with succinate feeding into complex II was unaffected. In line with inhibition of complex I, 24-h exposure of isolated rat soleus muscle to metformin or TZDs reduced cell respiration and increased anaerobic glycolysis (glucose oxidation: 270 micromol/l metformin, -30 +/- 9%; 9 micromol/l rosiglitazone, -25 +/- 8; and 9 micromol/l pioglitazone, -45 +/- 3; lactate release: 270 micromol/l metformin, +84 +/- 12; 9 micromol/l rosiglitazone, +38 +/- 6; and 9 micromol/l pioglitazone, +64 +/- 11; P < 0.05 each). As both metformin and TZDs inhibit complex I activity and cell respiration in vitro, similar mitochondrial actions could contribute to their antidiabetic effects.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Metabolismo Energético/efectos de los fármacos , Metformina/farmacología , Animales , Complejo I de Transporte de Electrón/metabolismo , Hipoglucemiantes/farmacología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Pioglitazona , Cloruro de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Rosiglitazona , Rotenona/farmacología , Tiazolidinedionas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA