Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(4): 641-661, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38221670

RESUMEN

Sleep spindles are major oscillatory components of Non-Rapid Eye Movement (NREM) sleep, reflecting hyperpolarization-rebound sequences of thalamocortical neurons. Reports suggest a link between sleep spindles and several forms of high-frequency oscillations which are considered as expressions of pathological off-line neural plasticity in the central nervous system. Here we investigated the relationship between thalamic sleep spindles and ripples in the anterior and mediodorsal nuclei (ANT and MD) of epilepsy patients. Whole-night LFP from the ANT and MD were co-registered with scalp EEG/polysomnography by using externalized leads in 15 epilepsy patients undergoing a Deep Brain Stimulation protocol. Slow (~12 Hz) and fast (~14 Hz) sleep spindles were present in the human ANT and MD and roughly, 20% of them were associated with ripples. Ripple-associated thalamic sleep spindles were characterized by longer duration and exceeded pure spindles in terms of spindle power as indicated by time-frequency analysis. Furthermore, ripple amplitude was modulated by the phase of sleep spindles within both thalamic nuclei. No signs of pathological processes were correlated with measures of ripple and spindle association, furthermore, the density of ripple-associated sleep spindles in the ANT showed a positive correlation with verbal comprehension. Our findings indicate the involvement of the human thalamus in coalescent spindle-ripple oscillations of NREM sleep.


Asunto(s)
Epilepsia , Sueño , Humanos , Sueño/fisiología , Tálamo/fisiología , Electroencefalografía , Núcleo Talámico Mediodorsal
2.
Epilepsia ; 65(2): 414-421, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38060351

RESUMEN

OBJECTIVE: This study was undertaken to conduct external validation of previously published epilepsy surgery prediction tools using a large independent multicenter dataset and to assess whether these tools can stratify patients for being operated on and for becoming free of disabling seizures (International League Against Epilepsy stage 1 and 2). METHODS: We analyzed a dataset of 1562 patients, not used for tool development. We applied two scales: Epilepsy Surgery Grading Scale (ESGS) and Seizure Freedom Score (SFS); and two versions of Epilepsy Surgery Nomogram (ESN): the original version and the modified version, which included electroencephalographic data. For the ESNs, we used calibration curves and concordance indexes. We stratified the patients into three tiers for assessing the chances of attaining freedom from disabling seizures after surgery: high (ESGS = 1, SFS = 3-4, ESNs > 70%), moderate (ESGS = 2, SFS = 2, ESNs = 40%-70%), and low (ESGS = 2, SFS = 0-1, ESNs < 40%). We compared the three tiers as stratified by these tools, concerning the proportion of patients who were operated on, and for the proportion of patients who became free of disabling seizures. RESULTS: The concordance indexes for the various versions of the nomograms were between .56 and .69. Both scales (ESGS, SFS) and nomograms accurately stratified the patients for becoming free of disabling seizures, with significant differences among the three tiers (p < .05). In addition, ESGS and the modified ESN accurately stratified the patients for having been offered surgery, with significant difference among the three tiers (p < .05). SIGNIFICANCE: ESGS and the modified ESN (at thresholds of 40% and 70%) stratify patients undergoing presurgical evaluation into three tiers, with high, moderate, and low chance for favorable outcome, with significant differences between the groups concerning having surgery and becoming free of disabling seizures. Stratifying patients for epilepsy surgery has the potential to help select the optimal candidates in underprivileged areas and better allocate resources in developed countries.


Asunto(s)
Epilepsia , Humanos , Resultado del Tratamiento , Epilepsia/diagnóstico , Epilepsia/cirugía , Convulsiones/cirugía , Nomogramas , Medición de Riesgo
3.
Epilepsia ; 65(5): 1346-1359, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38420750

RESUMEN

OBJECTIVE: This study was undertaken to develop a standardized grading system based on expert consensus for evaluating the level of confidence in the localization of the epileptogenic zone (EZ) as reported in published studies, to harmonize and facilitate systematic reviews in the field of epilepsy surgery. METHODS: We conducted a Delphi study involving 22 experts from 18 countries, who were asked to rate their level of confidence in the localization of the EZ for various theoretical clinical scenarios, using different scales. Information provided in these scenarios included one or several of the following data: magnetic resonance imaging (MRI) findings, invasive electroencephalography summary, and postoperative seizure outcome. RESULTS: The first explorative phase showed an overall interrater agreement of .347, pointing to large heterogeneity among experts' assessments, with only 17% of the 42 proposed scenarios associated with a substantial level of agreement. A majority showed preferences for the simpler scale and single-item scenarios. The successive Delphi voting phases resulted in a majority consensus across experts, with more than two thirds of respondents agreeing on the rating of each of the tested single-item scenarios. High or very high levels of confidence were ascribed to patients with either an Engel class I or class IA postoperative seizure outcome, a well-delineated EZ according to all available invasive EEG (iEEG) data, or a well-delineated focal epileptogenic lesion on MRI. MRI signs of hippocampal sclerosis or atrophy were associated with a moderate level of confidence, whereas a low level was ascribed to other MRI findings, a poorly delineated EZ according to iEEG data, or an Engel class II-IV postoperative seizure outcome. SIGNIFICANCE: The proposed grading system, based on an expert consensus, provides a simple framework to rate the level of confidence in the EZ reported in published studies in a structured and harmonized way, offering an opportunity to facilitate and increase the quality of systematic reviews and guidelines in the field of epilepsy surgery.


Asunto(s)
Consenso , Técnica Delphi , Electroencefalografía , Epilepsia , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/normas , Epilepsia/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/diagnóstico
4.
J Neurosci ; 41(26): 5677-5686, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-33863786

RESUMEN

Rapid eye movement (REM) sleep is an elusive neural state that is associated with a variety of functions from physiological regulatory mechanisms to complex cognitive processing. REM periods consist of the alternation of phasic and tonic REM microstates that differ in spontaneous and evoked neural activity. Although previous studies indicate, that cortical and thalamocortical activity differs across phasic and tonic microstates, the characterization of neural activity, particularly in subcortical structures that are critical in the initiation and maintenance of REM sleep is still limited in humans. Here, we examined electric activity patterns of the anterior nuclei of the thalamus as well as their functional connectivity with scalp EEG recordings during REM microstates and wakefulness in a group of epilepsy patients (N = 12, 7 females). Anterothalamic local field potentials (LFPs) showed increased high-α and ß frequency power in tonic compared with phasic REM, emerging as an intermediate state between phasic REM and wakefulness. Moreover, we observed increased thalamocortical synchronization in phasic compared with tonic REM sleep, especially in the slow and fast frequency ranges. Wake-like activity in tonic REM sleep may index the regulation of arousal and vigilance facilitating environmental alertness. On the other hand, increased thalamocortical synchronization may reflect the intrinsic activity of frontolimbic networks supporting emotional and memory processes during phasic REM sleep. In sum, our findings highlight that the heterogeneity of phasic and tonic REM sleep is not limited to cortical activity, but is also manifested by anterothalamic LFPs and thalamocortical synchronization.SIGNIFICANCE STATEMENT REM sleep is a heterogeneous sleep state that features the alternation of two microstates, phasic and tonic rapid eye movement (REM). These states differ in sensory processing, awakening thresholds, and cortical activity. Nevertheless, the characterization of these microstates, particularly in subcortical structures is still limited in humans. We had the unique opportunity to examine electric activity patterns of the anterior nuclei of the thalamus (ANTs) as well as their functional connectivity with scalp EEG recordings during REM microstates and wakefulness. Our findings show that the heterogeneity of phasic and tonic REM sleep is not limited to cortical activity, but is also manifested in the level of the thalamus and thalamocortical networks.


Asunto(s)
Núcleos Talámicos Anteriores/fisiología , Sueño REM/fisiología , Adolescente , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vigilia/fisiología , Adulto Joven
5.
Neuroimage ; 257: 119325, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35605767

RESUMEN

Slow waves are major pacemakers of NREM sleep oscillations. While slow waves themselves are mainly generated by cortical neurons, it is not clear what role thalamic activity plays in the generation of some oscillations grouped by slow waves, and to what extent thalamic activity during slow waves is itself driven by corticothalamic inputs. To address this question, we simultaneously recorded both scalp EEG and local field potentials from six thalamic nuclei (bilateral anterior, mediodorsal and ventral anterior) in fifteen epileptic patients (age-range: 17-64 years, 7 females) undergoing Deep Brain Stimulation Protocol and assessed the temporal evolution of thalamic activity relative to scalp slow waves using time-frequency analysis. We found that thalamic activity in all six nuclei during scalp slow waves is highly similar to what is observed on the scalp itself. Slow wave downstates are characterized by delta, theta and alpha activity and followed by beta, high sigma and low sigma activity during subsequent upstates. Gamma activity in the thalamus is not significantly grouped by slow waves. Theta and alpha activity appeared first on the scalp, but sigma activity appeared first in the thalamus. These effects were largely independent from the scalp region in which SWs were detected and the precise identity of thalamic nuclei. Our results suggest that while small thalamocortical neuron assemblies may initiate cortical oscillations, especially in the sleep spindle range, the large-scale neuronal activity in the thalamus which is detected by field potentials is principally driven by global cortical activity, and thus it is highly similar to what is observed on the scalp.


Asunto(s)
Corteza Cerebral , Cuero Cabelludo , Adolescente , Adulto , Corteza Cerebral/fisiología , Electroencefalografía/métodos , Femenino , Humanos , Persona de Mediana Edad , Sueño/fisiología , Tálamo/fisiología , Adulto Joven
6.
Epilepsia ; 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35195898

RESUMEN

OBJECTIVE: To evaluate direct user experience with wearable seizure detection devices in the home environment. METHODS: A structured online questionnaire was completed by 242 users (175 caregivers and 67 persons with epilepsy), most of the patients (87.19%) having tonic-clonic seizures. RESULTS: The vast majority of the users were overall satisfied with the wearable device, considered that using the device was easy, and agreed that the use of the device improved their quality of life (median = 6 on 7-point Likert scale). A high retention rate (84.58%) and a long median usage time (14 months) were reported. In the home environment, most users (75.85%) experienced seizure detection sensitivity similar (≥95%) to what was previously reported in validation studies in epilepsy monitoring units. The experienced false alarm rate was relatively low (0-0.43 per day). Due to the alarms, almost one third of persons with epilepsy (PWEs; 30.00%) experienced decrease in the number of seizure-related injuries, and almost two thirds of PWEs (65.41%) experienced improvement in the accuracy of seizure diaries. Nonvalidated devices had significantly lower retention rate, overall satisfaction, perceived sensitivity, and improvement in quality of life, as compared with validated devices. SIGNIFICANCE: Our results demonstrate the feasibility and usefulness of automated seizure detection in the home environment.

7.
Epilepsia ; 63(9): 2256-2268, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35723195

RESUMEN

OBJECTIVE: Memory deficits are frequent among patients with epilepsies affecting the temporal lobe. Hippocampal interictal epileptic discharges (hIEDs), the presumed epileptic exaggeration of sharp wave-ripples (SWRs), are known to contribute to memory dysfunction, but the potential underlying mechanism is unknown. The precise temporal coordination between hippocampal SWRs and corticothalamic spindles during sleep is critical for memory consolidation. Moreover, previous investigation indicated that hIEDs induce neocortical spindlelike oscillation. In the present study, we aimed to assess the influence of hIEDs on neocortical spindles. METHODS: We analyzed the spindle characteristics (duration, amplitude, frequency) of 21 epilepsy patients implanted with foramen ovale (FO) electrodes during a whole night sleep. Scalp sleep spindles were categorized based on their temporal relationship to hIEDs detected on the FO electrodes. Three groups were created: (1) spindles coinciding with hIEDs, (2) spindles "induced" by hIEDs, and (3) spindles without hIED co-occurrence. RESULTS: We found that spindles co-occurring with hIEDs had altered characteristics in all measured properties, lasted longer by 126 ± 48 ms (mean ± SD), and had higher amplitude by 3.4 ± 3.2 µV, and their frequency range shifted toward the higher frequencies within the 13-15-Hz range. Also, hIED-induced spindles had identical oscillatory properties to spindles without any temporal relationships with hIEDs. In more than half of our subjects, clear temporal coherence was revealed between hIEDs and spindles, but the direction of the coupling was patient-specific. SIGNIFICANCE: We investigated the effect of hippocampal IEDs on neocortical spindle activity and found spindle alterations in cases of spindle-hIED co-occurrence, but not in cases of hIED-initiated spindles. We propose that this is a marker of a pathologic process, where IEDs may have direct effect on spindle generation. It could mark a potential mechanism whereby IEDs disrupt memory processes, and also provide a potential therapeutic target to treat memory disturbances in epilepsy.


Asunto(s)
Epilepsia , Epilepsia/complicaciones , Hipocampo , Humanos , Trastornos de la Memoria , Sueño , Lóbulo Temporal
8.
Eur J Neurol ; 29(2): 382-389, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34741372

RESUMEN

BACKGROUND AND PURPOSE: Antiseizure medications (ASMs) should be tailored to individual characteristics, including seizure type, age, sex, comorbidities, comedications, drug allergies, and childbearing potential. We previously developed a web-based algorithm for patient-tailored ASM selection to assist health care professionals in prescribing medication using a decision support application (https://epipick.org). In this validation study, we used an independent dataset to assess whether ASMs recommended by the algorithm are associated with better outcomes than ASMs considered less desirable by the algorithm. METHODS: Four hundred twenty-five consecutive patients with newly diagnosed epilepsy were followed for at least 1 year after starting an ASM chosen by their physician. Patient characteristics were fed into the algorithm, blinded to the physician's ASM choices and outcome. The algorithm recommended ASMs, ranked in hierarchical groups, with Group 1 ASMs labeled as the best option for that patient. We evaluated retention rates, seizure freedom rates, and adverse effects leading to treatment discontinuation. Survival analysis contrasted outcomes between patients who received favored drugs and those who received lower ranked drugs. Propensity score matching corrected for possible imbalances between the groups. RESULTS: Antiseizure medications classified by the algorithm as best options had a higher retention rate (79.4% vs. 67.2%, p = 0.005), higher seizure freedom rate (76.0% vs. 61.6%, p = 0.002), and lower rate of discontinuation due to adverse effects (12.0% vs. 29.2%, p < 0.001) than ASMs ranked as less desirable by the algorithm. CONCLUSIONS: Use of the freely available decision support system is associated with improved outcomes. This drug selection application can provide valuable assistance to health care professionals prescribing medication for individuals with epilepsy.


Asunto(s)
Anticonvulsivantes , Epilepsia , Adolescente , Adulto , Algoritmos , Anticonvulsivantes/uso terapéutico , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Humanos , Internet , Convulsiones/tratamiento farmacológico
9.
Cereb Cortex ; 31(8): 3678-3700, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33749727

RESUMEN

Despite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their "intermediate" microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity. The other two types were discrete events with slower waveform dynamics and were found preferentially in upper cortical layers. These second and third types were also observed in rodents, nonhuman primates, and semi-chronic recordings from humans via laminar and Utah array microelectrodes. The rates of all three events were selectively modulated by auditory and electrical stimuli, pharmacological manipulation, and cold saline application and had small causal co-occurrences. These results suggest that the proper combination of high-resolution microelectrodes and analytic techniques can capture neuronal dynamics that lay between somatic action potentials and aggregate population activity. Understanding intermediate microscale dynamics in relation to single-cell and network dynamics may reveal important details about activity in the full cortical circuit.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Estimulación Acústica , Adulto , Animales , Estimulación Eléctrica , Electroencefalografía , Fenómenos Electrofisiológicos , Epilepsia/fisiopatología , Espacio Extracelular/fisiología , Femenino , Humanos , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Microelectrodos , Persona de Mediana Edad , Corteza Somatosensorial/fisiología , Análisis de Ondículas , Adulto Joven
10.
Proc Natl Acad Sci U S A ; 116(47): 23772-23782, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685634

RESUMEN

The alpha rhythm is the longest-studied brain oscillation and has been theorized to play a key role in cognition. Still, its physiology is poorly understood. In this study, we used microelectrodes and macroelectrodes in surgical epilepsy patients to measure the intracortical and thalamic generators of the alpha rhythm during quiet wakefulness. We first found that alpha in both visual and somatosensory cortex propagates from higher-order to lower-order areas. In posterior cortex, alpha propagates from higher-order anterosuperior areas toward the occipital pole, whereas alpha in somatosensory cortex propagates from associative regions toward primary cortex. Several analyses suggest that this cortical alpha leads pulvinar alpha, complicating prevailing theories of a thalamic pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortical layers. Together, these results suggest that the alpha rhythm likely reflects short-range supragranular feedback, which propagates from higher- to lower-order cortex and cortex to thalamus. These physiological insights suggest how alpha could mediate feedback throughout the thalamocortical system.


Asunto(s)
Ritmo alfa , Corteza Cerebral/fisiología , Electrodos , Electroencefalografía , Humanos , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA