Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Adv Physiol Educ ; 48(3): 639-647, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38932698

RESUMEN

Science communication is a core skill for undergraduate science students to acquire in preparation for their future careers, but studies show that this skill is underdeveloped in science graduates. The aim of this study was to discover the resources and approaches undergraduate students use to effectively develop their science communication skills and how the use of these methods relates to academic performance on a communication task. Undergraduate students undertaking a second-year biomedical science course (n = 490) were asked which approaches and resources they used to aid the development of their science communication skills, and the frequency of their responses was correlated against their laboratory report mark, using multiple regression and relative weights analysis. Students' (n = 453) use of Communication Learning in Practice for Scientists (CLIPS; an open-access interactive website on science communication), resources provided by the university, interactions with university teaching staff, and engagement with the scientific literature significantly predicted the laboratory report mark. Students enrolled in a blended format or in remote online learning only, and in different programs, performed comparably in the written report and used similar approaches and resources, other than remote students reporting more use of other online resources and students in blended learning engaging more with university resources. Together, these findings provide insight into which strategies are most helpful for undergraduate students to engage with to improve their scientific communication skills. The findings highlight that the provision of well-designed interactive communication resources, guided assessment resources, and opportunities to engage with teaching staff can assist in the development of science communication skills.NEW & NOTEWORTHY This study identifies the approaches and resources that undergraduate science students use to develop their science communication skills. It reveals which of these approaches and resources predict improved academic performance in a written science communication assessment task. The findings point to the importance of explicit guidance, and engagement with teaching staff, in advancing the development of science communication skills.


Asunto(s)
Comunicación , Estudiantes , Humanos , Femenino , Masculino , Estudiantes/psicología , Universidades , Adulto Joven , Ciencia/educación , Curriculum
2.
Neuron ; 56(4): 621-39, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18031681

RESUMEN

Development of appropriate dendritic arbors is crucial for neuronal information transfer. We show, using seizure-related gene 6 (sez-6) null mutant mice, that Sez-6 is required for normal dendritic arborization of cortical neurons. Deep-layer pyramidal neurons in the somatosensory cortex of sez-6 null mice exhibit an excess of short dendrites, and cultured cortical neurons lacking Sez-6 display excessive neurite branching. Overexpression of individual Sez-6 isoforms in knockout neurons reveals opposing actions of membrane-bound and secreted Sez-6 proteins, with membrane-bound Sez-6 exerting an antibranching effect under both basal and depolarizing conditions. Layer V pyramidal neurons in knockout brain slices show reduced excitatory postsynaptic responses and a reduced dendritic spine density, reflected by diminished punctate staining for postsynaptic density 95 (PSD-95). In behavioral tests, the sez-6 null mice display specific exploratory, motor, and cognitive deficits. In conclusion, cell-surface protein complexes involving Sez-6 help to sculpt the dendritic arbor, in turn enhancing synaptic connectivity.


Asunto(s)
Corteza Cerebral/anomalías , Corteza Cerebral/citología , Dendritas/ultraestructura , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas del Tejido Nervioso/genética , Células Piramidales/citología , Animales , Diferenciación Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/fisiopatología , Dendritas/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large , Potenciales Postsinápticos Excitadores/genética , Femenino , Guanilato-Quinasas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/fisiopatología , Vías Nerviosas/anomalías , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Células Piramidales/metabolismo , Transmisión Sináptica/genética
3.
J Neurosci ; 28(43): 10803-13, 2008 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-18945888

RESUMEN

Emotionally arousing events are particularly well remembered. This effect is known to result from the release of stress hormones and activation of beta adrenoceptors in the amygdala. However, the underlying cellular mechanisms are not understood. Small conductance calcium-activated potassium (SK) channels are present at glutamatergic synapses where they limit synaptic transmission and plasticity. Here, we show that beta adrenoceptor activation regulates synaptic SK channels in lateral amygdala pyramidal neurons, through activation of protein kinase A. We show that SK channels are constitutively recycled from the postsynaptic membrane and that activation of beta adrenoceptors removes SK channels from excitatory synapses. This results in enhanced synaptic transmission and plasticity. Our findings demonstrate a novel mechanism by which beta adrenoceptors control synaptic transmission and plasticity, through regulation of SK channel trafficking, and suggest that modulation of synaptic SK channels may contribute to beta adrenoceptor-mediated potentiation of emotional memories.


Asunto(s)
Amígdala del Cerebelo/citología , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/fisiología , Células Piramidales/fisiología , Receptores Adrenérgicos beta/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Adrenérgicos/farmacología , Animales , Animales Recién Nacidos , Apamina/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Estimulación Eléctrica/métodos , Endocitosis/efectos de los fármacos , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de la radiación , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Técnicas de Cultivo de Órganos/métodos , Técnicas de Placa-Clamp/métodos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Células Piramidales/efectos de los fármacos , Ratas , Ratas Wistar , Transfección
4.
Nat Neurosci ; 8(5): 635-41, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15852010

RESUMEN

At glutamatergic synapses, calcium influx through NMDA receptors (NMDARs) is required for long-term potentiation (LTP); this is a proposed cellular mechanism underlying memory and learning. Here we show that in lateral amygdala pyramidal neurons, SK channels are also activated by calcium influx through synaptically activated NMDARs, resulting in depression of the synaptic potential. Thus, blockade of SK channels by apamin potentiates fast glutamatergic synaptic potentials. This potentiation is blocked by the NMDAR antagonist AP5 (D(-)-2-amino-5-phosphono-valeric acid) or by buffering cytosolic calcium with BAPTA. Blockade of SK channels greatly enhances LTP of cortical inputs to lateral amygdala pyramidal neurons. These results show that NMDARs and SK channels are colocalized at glutamatergic synapses in the lateral amygdala. Calcium influx through NMDARs activates SK channels and shunts the resultant excitatory postsynaptic potential. These results demonstrate a new role for SK channels as postsynaptic regulators of synaptic efficacy.


Asunto(s)
Amígdala del Cerebelo/fisiología , Señalización del Calcio/fisiología , Plasticidad Neuronal/fisiología , Canales de Potasio Calcio-Activados/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Animales , Calcio/antagonistas & inhibidores , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Quelantes/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/metabolismo , Transmisión Sináptica/efectos de los fármacos
5.
Prog Neurobiol ; 66(5): 345-53, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12015199

RESUMEN

In many cell types rises in cytosolic calcium, either due to influx from the extracellular space, or by release from an intracellular store activates calcium dependent potassium currents on the plasmalemma. In neurons, these currents are largely activated following calcium influx via voltage gated calcium channels active during the action potentials. Three types of these currents are known: I(c), I(AHP) and I(sAHP). These currents can be distinguished by clear differences in their pharmacology and kinetics. Activation of these potassium currents modulates action potential time course and the repetitive firing properties of neurons. Single channel studies have identified two types of calcium-activated potassium channel which can also be separated on biophysical and pharmacological grounds and have been named BK and SK channels. It is now clear that BK channels underlie I(c) whereas SK channels underlie I(AHP). The identity of the channels underlying I(sAHP) are not known. In this review, we discuss the properties of the different types of calcium-activated potassium channels and the relationship between these channels and the macroscopic currents present in neurons.


Asunto(s)
Neuronas/fisiología , Canales de Potasio Calcio-Activados/fisiología , Animales , Canales de Potasio Calcio-Activados/química
6.
J Neurosci ; 22(5): 1618-28, 2002 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-11880492

RESUMEN

Principal neurons in the lateral nucleus of the amygdala (LA) exhibit a continuum of firing properties in response to prolonged current injections ranging from those that accommodate fully to those that fire repetitively. In most cells, trains of action potentials are followed by a slow afterhyperpolarization (AHP) lasting several seconds. Reducing calcium influx either by lowering concentrations of extracellular calcium or by applying nickel abolished the AHP, confirming it is mediated by calcium influx. Blockade of large conductance calcium-activated potassium channel (BK) channels with paxilline, iberiotoxin, or TEA revealed that BK channels are involved in action potential repolarization but only make a small contribution to the fast AHP that follows action potentials. The fast AHP was, however, markedly reduced by low concentrations of 4-aminopyridine and alpha-dendrotoxin, indicating the involvement of voltage-gated potassium channels in the fast AHP. The medium AHP was blocked by apamin and UCL1848, indicating it was mediated by small conductance calcium-activated potassium channel (SK) channels. Blockade of these channels had no effect on instantaneous firing. However, enhancement of the SK-mediated current by 1-ethyl-2-benzimidazolinone or paxilline increased the early interspike interval, showing that under physiological conditions activation of SK channels is insufficient to control firing frequency. The slow AHP, mediated by non-SK BK channels, was apamin-insensitive but was modulated by carbachol and noradrenaline. Tetanic stimulation of cholinergic afferents to the LA depressed the slow AHP and led to an increase in firing. These results show that BK, SK, and non-BK SK-mediated calcium-activated potassium currents are present in principal LA neurons and play distinct physiological roles.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Neuronas/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Vías Aferentes/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Cadmio/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio , Canales de Calcio/metabolismo , Estimulación Eléctrica , Técnicas In Vitro , Canales de Potasio de Gran Conductancia Activados por el Calcio , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Níquel/farmacología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Canales de Potasio Calcio-Activados/antagonistas & inhibidores , Ratas , Ratas Wistar , Canales de Potasio de Pequeña Conductancia Activados por el Calcio , Sinapsis/fisiología
7.
J Neurosci ; 24(12): 3031-9, 2004 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-15044542

RESUMEN

Pyramidal neurons in the lateral amygdala discharge trains of action potentials that show marked spike frequency adaptation, which is primarily mediated by activation of a slow calcium-activated potassium current. We show here that these neurons also express an alpha-dendrotoxin- and tityustoxin-Kalpha-sensitive voltage-dependent potassium current that plays a key role in the control of spike discharge frequency. This current is selectively targeted to the primary apical dendrite of these neurons. Activation of micro-opioid receptors by application of morphine or d-Ala(2)-N-Me-Phe(4)-Glycol(5)-enkephalin (DAMGO) potentiates spike frequency adaptation by enhancing the alpha-dendrotoxin-sensitive potassium current. The effects of micro-opioid agonists on spike frequency adaptation were blocked by inhibiting G-proteins with N-ethylmaleimide (NEM) and by blocking phospholipase A(2). Application of arachidonic acid mimicked the actions of DAMGO or morphine. These results show that micro-opioid receptor activation enhances spike frequency adaptation in lateral amygdala neurons by modulating a voltage-dependent potassium channel containing Kv1.2 subunits, through activation of the phospholipase A(2)-arachidonic acid-lipoxygenases cascade.


Asunto(s)
Amígdala del Cerebelo/fisiología , Dendritas/metabolismo , Narcóticos/farmacología , Canales de Potasio/metabolismo , Células Piramidales/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Dendritas/efectos de los fármacos , Técnicas In Vitro , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Ratas , Ratas Wistar , Receptores Opioides mu/efectos de los fármacos , Receptores Opioides mu/metabolismo
8.
Neuroscientist ; 9(3): 181-94, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15065814

RESUMEN

Calcium-activated potassium channels are a large family of potassium channels that are found throughout the central nervous system and in many other cell types. These channels are activated by rises in cytosolic calcium largely in response to calcium influx via voltage-gated calcium channels that open during action potentials. Activation of these potassium channels is involved in the control of a number of physiological processes from the firing properties of neurons to the control of transmitter release. These channels form the target for modulation for a range of neurotransmitters and have been implicated in the pathogenesis of neurological and psychiatric disorders. Here the authors summarize the varieties of calcium-activated potassium channels present in central neurons and their defining molecular and biophysical properties.


Asunto(s)
Calcio/metabolismo , Neuronas/fisiología , Canales de Potasio Calcio-Activados/fisiología , Envejecimiento/fisiología , Animales , Encefalopatías/etiología , Encefalopatías/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Aprendizaje/fisiología , Canales de Potasio Calcio-Activados/química , Canales de Potasio Calcio-Activados/clasificación , Canales de Potasio Calcio-Activados/genética
9.
Cell Biochem Biophys ; 55(3): 127-39, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19655101

RESUMEN

Small conductance (SK) channels are calcium-activated potassium channels that, when cloned in 1996, were thought solely to contribute to the afterhyperpolarisation that follows action potentials, and to control repetitive firing patterns of neurons. However, discoveries over the past few years have identified novel roles for SK channels in controlling dendritic excitability, synaptic transmission and synaptic plasticity. More recently, modulation of SK channel calcium sensitivity by casein kinase 2, and of SK channel trafficking by protein kinase A, have been demonstrated. This article will discuss recent findings regarding the function and modulation of SK channels in central neurons.


Asunto(s)
Canales de Potasio de Pequeña Conductancia Activados por el Calcio/química , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Animales , Calcio/metabolismo , Sistema Nervioso Central/metabolismo , Humanos , Aprendizaje/fisiología , Fenómenos Fisiológicos del Sistema Nervioso
10.
Clin Exp Pharmacol Physiol ; 34(10): 1077-83, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17714097

RESUMEN

1. SK channels are small-conductance calcium-activated potassium channels that are widely expressed in neurons. The traditional view of the functional role of SK channels is in mediating one component of the after-hyperpolarization that follows action potentials. Calcium influx via voltage-gated calcium channels active during action potentials opens SK channels and the resultant hyperpolarization lowers the firing frequency of action potentials in many neurons. 2. Recent advances have shown that, in addition to controlling action potential firing frequency, SK channels are also important in regulating dendritic excitability, synaptic transmission and synaptic plasticity. 3. In accordance with their role in modulating synaptic plasticity, SK channels are also important in regulating several learning and memory tasks and may also play a role in a number of neurological disorders. 4. The present review discusses recent findings on the role of SK channels in central neurons.


Asunto(s)
Sistema Nervioso Central/fisiología , Neuronas/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Secuencia de Aminoácidos , Animales , Sistema Nervioso Central/citología , Humanos , Datos de Secuencia Molecular , Enfermedades del Sistema Nervioso/fisiopatología
11.
Eur J Neurosci ; 22(7): 1627-35, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16197503

RESUMEN

The calcium-dependent afterhyperpolarization (AHP) that follows trains of action potentials is responsible for controlling action potential firing patterns in many neuronal cell types. We have previously shown that the slow AHP contributes to spike frequency adaptation in pyramidal neurons in the rat lateral amygdala. In addition, a dendritic voltage-gated potassium current mediated by Kv1.2-containing channels also suppresses action potential firing in these neurons. In this paper we show that this voltage-gated potassium current and the slow AHP act together to control spike frequency adaptation in lateral amygdala pyramidal neurons. The two currents have similar effects on action potential number when firing is evoked either by depolarizing current injections or by synaptic stimulation. However, they differ in their control of firing frequency, with the voltage-gated potassium current but not the slow AHP determining the initial frequency of action potential firing. This dual mechanism of controlling firing patterns is unique to lateral amygdala neurons and is likely to contribute to the very low levels of firing seen in lateral amygdala neurons in vivo.


Asunto(s)
Potenciales de Acción/fisiología , Adaptación Fisiológica/fisiología , Amígdala del Cerebelo/citología , Neuronas/fisiología , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Animales , Atropina/farmacología , Calcio , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Relación Dosis-Respuesta en la Radiación , Interacciones Farmacológicas , Venenos Elapídicos/farmacología , Estimulación Eléctrica/métodos , Femenino , Antagonistas del GABA/farmacología , Técnicas In Vitro , Isoproterenol/farmacología , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Antagonistas Muscarínicos/farmacología , Neuronas/efectos de los fármacos , Norepinefrina/farmacología , Técnicas de Placa-Clamp/métodos , Ácidos Fosfínicos/farmacología , Picrotoxina/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Propanolaminas/farmacología , Ratas , Ratas Wistar
12.
J Physiol ; 552(Pt 2): 483-97, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14561831

RESUMEN

In many neurons, trains of action potentials show frequency-dependent broadening. This broadening results from the voltage-dependent inactivation of K+ currents that contribute to action potential repolarisation. In different neuronal cell types these K+ currents have been shown to be either slowly inactivating delayed rectifier type currents or rapidly inactivating A-type voltage-gated K+ currents. Recent findings show that inactivation of a Ca2+-dependent K+ current, mediated by large conductance BK-type channels, also contributes to spike broadening. Here, using whole-cell recordings in acute slices, we examine spike broadening in lateral amygdala projection neurons. Spike broadening is frequency dependent and is reversed by brief hyperpolarisations. This broadening is reduced by blockade of voltage-gated Ca2+ channels and BK channels. In contrast, broadening is not blocked by high concentrations of 4-aminopyridine (4-AP) or alpha-dendrotoxin. We conclude that while inactivation of BK-type Ca2+-activated K+ channels contributes to spike broadening in lateral amygdala neurons, inactivation of another as yet unidentified outward current also plays a role.


Asunto(s)
Amígdala del Cerebelo/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio Calcio-Activados/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Calcio/metabolismo , Venenos Elapídicos/farmacología , Electrofisiología , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA