Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Psychiatry ; 26(7): 2721-2739, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33664474

RESUMEN

Dysfunctional mitochondria characterise Parkinson's Disease (PD). Uncovering etiological molecules, which harm the homeostasis of mitochondria in response to pathological cues, is therefore pivotal to inform early diagnosis and therapy in the condition, especially in its idiopathic forms. This study proposes the 18 kDa Translocator Protein (TSPO) to be one of those. Both in vitro and in vivo data show that neurotoxins, which phenotypically mimic PD, increase TSPO to enhance cellular redox-stress, susceptibility to dopamine-induced cell death, and repression of ubiquitin-dependent mitophagy. TSPO amplifies the extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signalling, forming positive feedback, which represses the transcription factor EB (TFEB) and the controlled production of lysosomes. Finally, genetic variances in the transcriptome confirm that TSPO is required to alter the autophagy-lysosomal pathway during neurotoxicity.


Asunto(s)
Mitofagia , Síndromes de Neurotoxicidad , Receptores de GABA , Autofagia , Humanos , Lisosomas/metabolismo , Mitocondrias , Síndromes de Neurotoxicidad/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo
2.
FASEB J ; 34(1): 458-473, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914665

RESUMEN

A glutamic acid to lysine (E40K) residue substitution in superoxide dismutase 1 (SOD1) is associated with canine degenerative myelopathy: the only naturally occurring large animal model of amyotrophic lateral sclerosis (ALS). The E40 residue is highly conserved across mammals, except the horse, which naturally carries the (dog mutant) K40 residue. Here we hypothesized that in vitro expression of mutant dog SOD1 would recapitulate features of human ALS (ie, SOD1 protein aggregation, reduced cell viability, perturbations in mitochondrial morphology and membrane potential, reduced ATP production, and increased superoxide ion levels); further, we hypothesized that an equivalent equine SOD1 variant would share similar perturbations in vitro, thereby explain horses' susceptibility to certain neurodegenerative diseases. As in human ALS, expression of mutant dog SOD1 was associated with statistically significant increased aggregate formation, raised superoxide levels (ROS), and altered mitochondrial morphology (increased branching (form factor)), when compared to wild-type dog SOD1-expressing cells. Similar deficits were not detected in cells expressing the equivalent horse SOD1 variant. Our data helps explain the ALS-associated cellular phenotype of dogs expressing the mutant SOD1 protein and reveals that species-specific sequence conservation does not necessarily predict pathogenicity. The work improves understanding of the etiopathogenesis of canine degenerative myelopathy.


Asunto(s)
Adenosina Trifosfato/metabolismo , Esclerosis Amiotrófica Lateral/patología , Mitocondrias/metabolismo , Mutación Missense , Superóxido Dismutasa-1/genética , Transgenes/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Perros , Caballos , Humanos , Mitocondrias/patología , Filogenia , Especificidad de la Especie
3.
Nature ; 491(7425): 608-12, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23135403

RESUMEN

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


Asunto(s)
Eritroblastos/metabolismo , Eritropoyesis , Hemo/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/metabolismo , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patología , Animales , Modelos Animales de Enfermedad , Eritroblastos/citología , Ferroquelatasa/metabolismo , Prueba de Complementación Genética , Humanos , Concentración de Iones de Hidrógeno , Ratones , Mitocondrias/patología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Oxidación-Reducción , Proteínas/genética , Pez Cebra/metabolismo , Proteína Inhibidora ATPasa
4.
Mol Ther ; 25(2): 427-442, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28153093

RESUMEN

Restoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expression of epigenetic modifications on histones 3 and 4, and reactivation of endogenous OCT4 and downstream targets at a lower level than that observed in hESCs. Mechanistic insights into the process of VPA-induced reprogramming revealed that it was dependent on OCT4 promoter activation, which was achieved independently of the PI3K (phosphatidylinositol 3-kinase)/AKT/mTOR (mammalian target of rapamycin) pathway or GSK3ß inhibition but was concomitant with the presence of acetylated histones H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time, the pluripotent transcriptional and molecular signature and metabolic status of human chemically induced pluripotent stem cells.


Asunto(s)
Amnios/citología , Transdiferenciación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Biomarcadores , Ciclo Celular/genética , Transdiferenciación Celular/genética , Reprogramación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Metabolismo Energético , Epigénesis Genética , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Genes Reporteros , Glucólisis , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Homeótica Nanog/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes de Fusión , Serina-Treonina Quinasas TOR/metabolismo , Activación Transcripcional
5.
Cells ; 12(15)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566036

RESUMEN

MicroRNAs (miRNAs) are important regulators of embryonic stem cell (ESC) biology, and their study has identified key regulatory mechanisms. To find novel pathways regulated by miRNAs in ESCs, we undertook a bioinformatics analysis of gene pathways differently expressed in the absence of miRNAs due to the deletion of Dicer, which encodes an RNase that is essential for the synthesis of miRNAs. One pathway that stood out was Ca2+ signaling. Interestingly, we found that Dicer-/- ESCs had no difference in basal cytoplasmic Ca2+ levels but were hyperresponsive when Ca2+ import into the endoplasmic reticulum (ER) was blocked by thapsigargin. Remarkably, the increased Ca2+ response to thapsigargin in ESCs resulted in almost no increase in apoptosis and no differences in stress response pathways, despite the importance of miRNAs in the stress response of other cell types. The increased Ca2+ response in Dicer-/- ESCs was also observed during purinergic receptor activation, demonstrating a physiological role for the miRNA regulation of Ca2+ signaling pathways. In examining the mechanism of increased Ca2+ responsiveness to thapsigargin, neither store-operated Ca2+ entry nor Ca2+ clearance mechanisms from the cytoplasm appeared to be involved. Rather, it appeared to involve an increase in the expression of one isoform of the IP3 receptors (Itpr2). miRNA regulation of Itpr2 expression primarily appeared to be indirect, with transcriptional regulation playing a major role. Therefore, the miRNA regulation of Itpr2 expression offers a unique mechanism to regulate Ca2+ signaling pathways in the physiology of pluripotent stem cells.


Asunto(s)
MicroARNs , Animales , Ratones , MicroARNs/metabolismo , Tapsigargina/farmacología , Diferenciación Celular/genética , Células Madre Embrionarias , Homeostasis
6.
EBioMedicine ; 65: 103244, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33647769

RESUMEN

Mitochondria play a vital role in cellular metabolism and are central mediator of intracellular signalling, cell differentiation, morphogenesis and demise. An increasingly higher number of pathologies is linked with mitochondrial dysfunction, which can arise from either genetic defects affecting core mitochondrial components or malfunctioning pathways impairing mitochondrial homeostasis. As such, mitochondria are considered an important target in several pathologies spanning from neoplastic to neurodegenerative diseases as well as metabolic syndromes. In this review we provide an overview of the state-of-the-art in mitochondrial pharmacology, focusing on the novel compounds that have been generated in the bid to correct mitochondrial aberrations. Our work aims to serve the scientific community working on translational medical science by highlighting the most promising pharmacological approaches to target mitochondrial dysfunction in disease.


Asunto(s)
Antioxidantes/uso terapéutico , Mitocondrias/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , Antioxidantes/farmacología , Humanos , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/patología , Dinámicas Mitocondriales/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Fosforilación Oxidativa/efectos de los fármacos , Pirazinas/farmacología , Pirazinas/uso terapéutico , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
7.
Br J Pharmacol ; 178(2): 298-311, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33037618

RESUMEN

BACKGROUND AND PURPOSE: The mitochondrial F1 Fo -ATPsynthase is pivotal for cellular homeostasis. When respiration is perturbed, its mode of action everts becoming an F1 Fo -ATPase and therefore consuming rather producing ATP. Such a reversion is an obvious target for pharmacological intervention to counteract pathologies. Despite this, tools to selectively inhibit the phases of ATP hydrolysis without affecting the production of ATP remain scarce. Here, we report on a newly synthesised chemical, the NH-sulfoximine (NHS), which achieves such a selectivity. EXPERIMENTAL APPROACH: The chemical structure of the F1 Fo -ATPase inhibitor BTB-06584 was used as a template to synthesise NHS. We assessed its pharmacology in human neuroblastoma SH-SY5Y cells in which we profiled ATP levels, redox signalling, autophagy pathways and cellular viability. NHS was given alone or in combination with either the glucose analogue 2-deoxyglucose (2-DG) or the chemotherapeutic agent etoposide. KEY RESULTS: NHS selectively blocks the consumption of ATP by mitochondria leading a subtle cytotoxicity associated via the concomitant engagement of autophagy which impairs cell viability. NHS achieves such a function independently of the F1 Fo -ATPase inhibitory factor 1 (IF1). CONCLUSION AND IMPLICATIONS: The novel sulfoximine analogue of BTB-06584, NHS, acts as a selective pharmacological inhibitor of the mitochondrial F1 Fo -ATPase. NHS, by blocking the hydrolysis of ATP perturbs the bioenergetic homoeostasis of cancer cells, leading to a non-apoptotic type of cell death.


Asunto(s)
Mitocondrias , ATPasas de Translocación de Protón , Adenosina Trifosfato , Muerte Celular , Humanos , Hidrólisis , Mitocondrias/metabolismo , ATPasas de Translocación de Protón/metabolismo
8.
J Neuroimmune Pharmacol ; 15(4): 565-566, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32915348

RESUMEN

Mitochondrial dysfunction occurs in most neurodegenerative diseases, contributing to both their onset and progression. A recent breakthrough unveiled that propagation of the inflammatory response and subsequent neuronal injury are also mediated extracellularly by damaged mitochondria, which are released from active microglial cells into the brain milieu. These extracellular fragmented mitochondria can therefore generate sufficient toxicity to trigger neuronal death and widespread brain damage through activation of naïve astrocytes. Besides suggesting potential new pharmacological strategies of therapeutic intervention in neurodegeneration, this original work indicates that mitochondria might act as bioactive ligands exerting paracrine functions. This is an interesting, novel and impactful concept that deserves consideration by the scientific community, as the attention should now be focused on the identification of the specific receptors through which mitochondria mediate such an important extracellular signalling mechanism in neurological conditions.


Asunto(s)
Mediadores de Inflamación/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Comunicación Paracrina/fisiología , Transducción de Señal/fisiología , Humanos , Enfermedades Neurodegenerativas/patología
9.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355129

RESUMEN

Mitochondria drive cellular adaptation to stress by retro-communicating with the nucleus. This process is known as mitochondrial retrograde response (MRR) and is induced by mitochondrial dysfunction. MRR results in the nuclear stabilization of prosurvival transcription factors such as the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Here, we demonstrate that MRR is facilitated by contact sites between mitochondria and the nucleus. The translocator protein (TSPO) by preventing the mitophagy-mediated segregation o mitochonria is required for this interaction. The complex formed by TSPO with the protein kinase A (PKA), via the A-kinase anchoring protein acyl-CoA binding domain containing 3 (ACBD3), established the tethering. The latter allows for cholesterol redistribution of cholesterol in the nucleus to sustain the prosurvival response by blocking NF-κB deacetylation. This work proposes a previously unidentified paradigm in MRR: the formation of contact sites between mitochondria and nucleus to aid communication.

10.
Cell Death Dis ; 9(6): 669, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29867190

RESUMEN

In vertebrates, mitochondria are tightly preserved energy producing organelles, which sustain nervous system development and function. The understanding of proteins that regulate their homoeostasis in complex animals is therefore critical and doing so via means of systemic analysis pivotal to inform pathophysiological conditions associated with mitochondrial deficiency. With the goal to decipher the role of the ATPase inhibitory factor 1 (IF1) in brain development, we employed the zebrafish as elected model reporting that the Atpif1a-/- zebrafish mutant, pinotage (pnt tq209 ), which lacks one of the two IF1 paralogous, exhibits visual impairment alongside increased apoptotic bodies and neuroinflammation in both brain and retina. This associates with increased processing of the dynamin-like GTPase optic atrophy 1 (OPA1), whose ablation is a direct cause of inherited optic atrophy. Defects in vision associated with the processing of OPA1 are specular in Atpif1-/- mice thus confirming a regulatory axis, which interlinks IF1 and OPA1 in the definition of mitochondrial fitness and specialised brain functions. This study unveils a functional relay between IF1 and OPA1 in central nervous system besides representing an example of how the zebrafish model could be harnessed to infer the activity of mitochondrial proteins during development.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Trastornos de la Visión/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Apoptosis , Encéfalo/patología , Inflamación/patología , Larva/metabolismo , Ratones Endogámicos C57BL , Microglía/patología , Modelos Biológicos , Actividad Motora , Atrofia Óptica Autosómica Dominante/metabolismo , Atrofia Óptica Autosómica Dominante/patología , Proteínas , Retina/patología , Médula Espinal/patología , Trastornos de la Visión/patología , Proteína Inhibidora ATPasa
11.
Cell Rep ; 25(13): 3573-3581.e4, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30590033

RESUMEN

Transglutaminase type 2 (TG2) is a multifunctional enzyme that plays a key role in mitochondria homeostasis under stressful cellular conditions. TG2 interactome analysis reveals an enzyme interaction with GRP75 (glucose-regulated protein 75). GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. We demonstrate that the TG2 and GRP75 interaction occurs in MAMs. The absence of the TG2-GRP75 interaction leads to an increase of the interaction between IP3R-3 and GRP75; a decrease of the number of ER-mitochondria contact sites; an impairment of the ER-mitochondrial Ca2+ flux; and an altered profile of the MAM proteome. These findings indicate TG2 is a key regulatory element of the MAMs.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Transglutaminasas/metabolismo , Animales , Calcio/metabolismo , Retículo Endoplásmico/ultraestructura , Fibroblastos/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2
12.
Cell Rep ; 18(8): 1869-1883, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28228254

RESUMEN

The ubiquitously expressed ATPase inhibitory factor 1 (IF1) is a mitochondrial protein that blocks the reversal of the F1Fo-ATPsynthase, preventing dissipation of cellular ATP and ischemic damage. IF1 suppresses programmed cell death, enhancing tumor invasion and chemoresistance, and is expressed in various types of human cancers. In this study, we examined its effect on mitochondrial redox balance and apoptotic cristae remodeling, finding that, by maintaining ATP levels, IF1 reduces glutathione (GSH) consumption and inactivation of peroxiredoxin 3 (Prx3) during apoptosis. This correlates with inhibition of metallopeptidase OMA1-mediated processing of the pro-fusion dynamin-related protein optic atrophy 1 (OPA1). Stabilization of OPA1 impedes cristae remodeling and completion of apoptosis. Taken together, these data suggest that IF1 acts on both mitochondrial bioenergetics and structure, is involved in mitochondrial signaling in tumor cells, and may underlie their proliferative capacity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas/metabolismo , Animales , Apoptosis/fisiología , Línea Celular , Línea Celular Tumoral , Metabolismo Energético/fisiología , Glutatión/metabolismo , Células HeLa , Humanos , Metaloendopeptidasas/metabolismo , Ratones , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Transducción de Señal/fisiología , Proteína Inhibidora ATPasa
14.
Br J Pharmacol ; 171(18): 4193-206, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24641180

RESUMEN

BACKGROUND AND PURPOSE: Ischaemia compromises mitochondrial respiration. Consequently, the mitochondrial F1 Fo-ATPsynthase reverses and acts as a proton-pumping ATPase, so maintaining the mitochondrial membrane potential (ΔΨm ), while accelerating ATP depletion and cell death. Here we have looked for a molecule that can selectively inhibit this activity without affecting ATP synthesis, preserve ATP and delay ischaemic cell death. EXPERIMENTAL APPROACH: We developed a chemoinformatic screen based on the structure of BMS199264, which is reported to selectively inhibit F1 Fo-ATPase activity and which is cardioprotective. Results suggested the molecule BTB06584 (hereafter referred to as BTB). Fluorescence microscopy was used to study its effects on ΔΨm and on the rate of ATP consumption following inhibition of respiration in several cell types. The effect of BTB on oxygen (O2 ) consumption was explored and protective potential determined using ischaemia/reperfusion assays. We also investigated a potential mechanism of action through its interaction with inhibitor protein of F1 subunit (IF1 ), the endogenous inhibitor of the F1 Fo-ATPase. KEY RESULTS: BTB inhibited F1 Fo-ATPase activity with no effect on ΔΨm or O2 consumption. ATP consumption was decreased following inhibition of respiration, and ischaemic cell death was reduced. BTB efficiency was increased by IF1 overexpression and reduced by silencing the protein. In addition, BTB rescued defective haemoglobin synthesis in zebrafish pinotage (pnt) mutants in which expression of the Atpif1a gene is lost. CONCLUSIONS AND IMPLICATIONS: BTB may represent a valuable tool to selectively inhibit mitochondrial F1 Fo-ATPase activity without compromising ATP synthesis and to limit ischaemia-induced injury caused by reversal of the mitochondrial F1 Fo-ATPsynthase.


Asunto(s)
Clorobenzoatos/farmacología , Inhibidores Enzimáticos/farmacología , Mitocondrias/efectos de los fármacos , Proteínas/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , Sulfonas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Embrión no Mamífero , Células HeLa , Hemoglobinas/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Consumo de Oxígeno , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Pez Cebra , Proteína Inhibidora ATPasa
15.
Int J Cell Biol ; 2012: 367934, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22966230

RESUMEN

In mammals, the mitochondrial F(1)F(o)-ATPsynthase sets out the energy homeostasis by producing the bulk of cellular ATP. As for every enzyme, the laws of thermodynamics command it; however, it is privileged to have a dedicated molecular regulator that controls its rotation. This is the so-called ATPase Inhibitory Factor 1 (IF(1)) that blocks its reversal to avoid the consumption of cellular ATP when the enzyme acts as an ATP hydrolase. Recent evidence has also demonstrated that IF(1) may control the alignment of the enzyme along the mitochondrial inner membrane, thus increasing the interest for the molecule. We conceived this review to outline the fundamental knowledge of the F(1)F(o)-ATPsynthase and link it to the molecular mechanisms by which IF(1) regulates its way of function, with the ultimate goal to highlight this as an important and possibly unique means to control this indispensable enzyme in both physiological and pathological settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA