Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Rep Prog Phys ; 86(11)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37699388

RESUMEN

We review methods that allow one to detect and characterize quantum correlations in many-body systems, with a special focus on approaches which are scalable. Namely, those applicable to systems with many degrees of freedom, without requiring a number of measurements or computational resources to analyze the data that scale exponentially with the system size. We begin with introducing the concepts of quantum entanglement, Einstein-Podolsky-Rosen steering, and Bell nonlocality in the bipartite scenario, to then present their multipartite generalization. We review recent progress on characterizing these quantum correlations from partial information on the system state, such as through data-driven methods or witnesses based on low-order moments of collective observables. We then review state-of-the-art experiments that demonstrate the preparation, manipulation and detection of highly-entangled many-body systems. For each platform (e.g. atoms, ions, photons, superconducting circuits) we illustrate the available toolbox for state preparation and measurement, emphasizing the challenges that each system poses. To conclude, we present a list of timely open problems in the field.

2.
Phys Rev Lett ; 131(7): 070201, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37656845

RESUMEN

We expand the toolbox for studying Bell correlations in multipartite systems by introducing permutationally invariant Bell inequalities (PIBIs) involving few-body correlators. First, we present around twenty families of PIBIs with up to three- or four-body correlators, that are valid for an arbitrary number of particles. Compared to known inequalities, these show higher noise robustness, or the capability to detect Bell correlations in highly non-Gaussian spin states. We then focus on finding PIBIs that are of practical experimental implementation, in the sense that the associated operators require collective spin measurements along only a few directions. To this end, we formulate this search problem as a semidefinite program that embeds the constraints required to look for PIBIs of the desired form.

3.
Phys Rev Lett ; 130(13): 133604, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37067306

RESUMEN

Recently, solid-state mechanical resonators have become a platform for demonstrating nonclassical behavior of systems involving a truly macroscopic number of particles. Here, we perform the most macroscopic quantum test in a mechanical resonator to date, which probes the validity of quantum mechanics by ruling out a classical description at the microgram mass scale. This is done by a direct measurement of the Wigner function of a high-overtone bulk acoustic wave resonator mode, monitoring the gradual decay of negativities over tens of microseconds. While the obtained macroscopicity of µ=11.3 is on par with state-of-the-art atom interferometers, future improvements of mode geometry and coherence times could test the quantum superposition principle at unprecedented scales and also place more stringent bounds on spontaneous collapse models.

4.
Phys Rev Lett ; 127(1): 013601, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270297

RESUMEN

We propose a technique to control the macroscopic collective nuclear spin of a helium-3 gas in the quantum regime using light. The scheme relies on metastability exchange collisions to mediate interactions between optically accessible metastable states and the ground-state nuclear spin, giving rise to an effective nuclear spin-light quantum nondemolition interaction of the Faraday form. Our technique enables measurement-based quantum control of nuclear spins, such as the preparation of spin-squeezed states. This, combined with the day-long coherence time of nuclear spin states in helium-3, opens the possibility for a number of applications in quantum technology.

5.
Phys Rev Lett ; 127(1): 010401, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270307

RESUMEN

Entanglement measures quantify nonclassical correlations present in a quantum system, but can be extremely difficult to calculate, even more so, when information on its state is limited. Here, we consider broad families of entanglement criteria that are based on variances of arbitrary operators and analytically derive the lower bounds these criteria provide for two relevant entanglement measures: the best separable approximation and the generalized robustness. This yields a practical method for quantifying entanglement in realistic experimental situations, in particular, when only few measurements of simple observables are available. As a concrete application of this method, we quantify bipartite and multipartite entanglement in spin-squeezed Bose-Einstein condensates of ∼500 atoms, by lower bounding the best separable approximation and the generalized robustness only from measurements of first and second moments of the collective spin operator.

6.
Phys Rev Lett ; 125(12): 123402, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016728

RESUMEN

We experimentally and theoretically study phase coherence in two-component Bose-Einstein condensates of ^{87}Rb atoms on an atom chip. Using Ramsey interferometry we determine the temporal decay of coherence between the |F=1,m_{F}=-1⟩ and |F=2,m_{F}=+1⟩ hyperfine ground states. We observe that the coherence is limited by random collisional phase shifts due to the stochastic nature of atom loss. The mechanism is confirmed quantitatively by a quantum trajectory method based on a master equation which takes into account collisional interactions, atom number fluctuations, and losses in the system. This decoherence process can be slowed down by reducing the density of the condensate. Our findings are relevant for experiments on quantum metrology and many-particle entanglement with Bose-Einstein condensates and the development of chip-based atomic clocks.

7.
Phys Rev Lett ; 119(23): 230402, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29286695

RESUMEN

We present a method to certify the presence of Bell correlations in experimentally observed statistics, and to obtain new Bell inequalities. Our approach is based on relaxing the conditions defining the set of correlations obeying a local hidden variable model, yielding a convergent hierarchy of semidefinite programs (SDP's). Because the size of these SDP's is independent of the number of parties involved, this technique allows us to characterize correlations in many-body systems. As an example, we illustrate our method with the experimental data presented in Science 352, 441 (2016)SCIEAS0036-807510.1126/science.aad8665.

8.
Phys Rev Lett ; 119(17): 170403, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29219453

RESUMEN

A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.

9.
Nat Phys ; 20(4): 564-570, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638458

RESUMEN

In recent years, important progress has been made towards encoding and processing quantum information in the large Hilbert space of bosonic modes. Mechanical resonators have several practical advantages for this purpose, because they confine many high-quality-factor modes into a small volume and can be easily integrated with different quantum systems. However, it is challenging to create direct interactions between different mechanical modes that can be used to emulate quantum gates. Here we demonstrate an in situ tunable beamsplitter-type interaction between several mechanical modes of a high-overtone bulk acoustic-wave resonator. The engineered interaction is mediated by a parametrically driven superconducting transmon qubit, and we show that it can be tailored to couple pairs or triplets of phononic modes. Furthermore, we use this interaction to demonstrate the Hong-Ou-Mandel effect between phonons. Our results lay the foundations for using phononic systems as quantum memories and platforms for quantum simulations.

10.
Science ; 380(6642): 274-278, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37079693

RESUMEN

According to quantum mechanics, a physical system can be in any linear superposition of its possible states. Although the validity of this principle is routinely validated for microscopic systems, it is still unclear why we do not observe macroscopic objects to be in superpositions of states that can be distinguished by some classical property. Here we demonstrate the preparation of a mechanical resonator in Schrödinger cat states of motion, where the ∼1017 constituent atoms are in a superposition of two opposite-phase oscillations. We control the size and phase of the superpositions and investigate their decoherence dynamics. Our results offer the possibility of exploring the boundary between the quantum and classical worlds and may find applications in continuous-variable quantum information processing and metrology with mechanical resonators.

11.
Nat Commun ; 12(1): 2410, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893281

RESUMEN

The Einstein-Podolsky-Rosen (EPR) paradox plays a fundamental role in our understanding of quantum mechanics, and is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the uncertainty principle. This apparent contradiction to complementarity is made possible by nonclassical correlations stronger than entanglement, called steering. Quantum information recognises steering as an essential resource for a number of tasks but, contrary to entanglement, its role for metrology has so far remained unclear. Here, we formulate the EPR paradox in the framework of quantum metrology, showing that it enables the precise estimation of a local phase shift and of its generating observable. Employing a stricter formulation of quantum complementarity, we derive a criterion based on the quantum Fisher information that detects steering in a larger class of states than well-known uncertainty-based criteria. Our result identifies useful steering for quantum-enhanced precision measurements and allows one to uncover steering of non-Gaussian states in state-of-the-art experiments.

12.
Phys Rev E ; 102(2-1): 022135, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32942447

RESUMEN

Path integrals play a crucial role in describing the dynamics of physical systems subject to classical or quantum noise. In fact, when correctly normalized, they express the probability of transition between two states of the system. In this work, we show a consistent approach to solve conditional and unconditional Euclidean (Wiener) Gaussian path integrals that allow us to compute transition probabilities in the semiclassical approximation from the solutions of a system of linear differential equations. Our method is particularly useful for investigating Fokker-Planck dynamics and the physics of stringlike objects such as polymers. To give some examples, we derive the time evolution of the d-dimensional Ornstein-Uhlenbeck process and of the Van der Pol oscillator driven by white noise. Moreover, we compute the end-to-end transition probability for a charged string at thermal equilibrium, when an external field is applied.

13.
Science ; 360(6387): 409-413, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29700261

RESUMEN

Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.

15.
Science ; 352(6284): 441-4, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27102479

RESUMEN

Characterizing many-body systems through the quantum correlations between their constituent particles is a major goal of quantum physics. Although entanglement is routinely observed in many systems, we report here the detection of stronger correlations--Bell correlations--between the spins of about 480 atoms in a Bose-Einstein condensate. We derive a Bell correlation witness from a many-particle Bell inequality involving only one- and two-body correlation functions. Our measurement on a spin-squeezed state exceeds the threshold for Bell correlations by 3.8 standard deviations. Our work shows that the strongest possible nonclassical correlations are experimentally accessible in many-body systems and that they can be revealed by collective measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA