Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Protoplasma ; 230(1-2): 51-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17351733

RESUMEN

Electromagnetic radiation (EMR) in the 400-700 nm bandwidth of photosynthetically active radiation (PAR) has been established as an important source of energy for photosynthesis and environmental signals regulating many aspects of green-plant life. Above-ambient levels of UV-B radiation (290-320 nm) under high-PAR conditions have been shown to elicit responses in chloroplasts of Brassica napus similar to those of chloroplasts at low-PAR exposure (W. Fagerberg and J. Bornman, Physiol. Plant. 101: 833-844, 1997). The question arises as to whether UV at normal levels can also evoke similar responses. Here we provide evidence that even below-ambient levels of UV-B (1/28 ambient; Durham, N.H., U.S.A., 1200 hours, March) were capable of inducing an increase in thylakoid surface area relative to the chloroplast volume typical of a low-PAR response (shade response) in sunflowers. This response occurred even though leaves were concurrently exposed to PAR levels that normally induce a "sun" or high-PAR response in the absence of UV-B. Subambient levels of UV-B were also associated with a decrease in chloroplast and starch volume. Exposure to levels of UV-A 1/10 of ambient appeared to enhance the high-PAR response of the chloroplast, characterized by an increase in the amounts of stored starch, an increase in chloroplast volume density ratio values, and a decrease in thylakoid surface area density ratios relative to the high-light controls. These effects were opposite to those seen in UV-B-exposed tissue. In a general sense, subambient levels of UV-B evoked a response similar to that elicited by low-PAR irradiance, while subambient UV-A elicited responses similar to those typical of high-PAR irradiance. The fact that below-ambient levels of UV altered a normal chloroplast structural response to PAR provides evidence that UV may be an important environmental signal for plants.


Asunto(s)
Cloroplastos/efectos de la radiación , Cloroplastos/ultraestructura , Almidón/metabolismo , Rayos Ultravioleta , Helianthus/efectos de la radiación , Helianthus/ultraestructura , Fotosíntesis/efectos de la radiación , Hojas de la Planta/citología , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/ultraestructura , Almidón/efectos de la radiación , Tilacoides/efectos de la radiación , Técnicas de Cultivo de Tejidos
2.
Photochem Photobiol Sci ; 4(3): 275-9, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15738995

RESUMEN

Plants exposed to natural solar radiation usually show acclimation responses on a daily and seasonal basis. Many of these responses are complex and modified by interactions with acclimation responses to other climatic factors. While changes in photosynthetically active radiation (PAR, 400-700 nm) are the driving force for many acclimation responses in plants, radiation outside the PAR range is also important. Recently, interest has increased in the potential role of UV-A (320-400 nm) and UV-B (280-320 nm) components of sunlight in plant developmental, physiological and daily acclimation processes. In order to explore the role of UV-B further, Brassica napus L. cv Paroll plants were grown to maturity under 13 kJ d(-1) of biologically effective ultraviolet-B radiation (UV-B(BE), 280-320 nm) plus 800 micromol photons m(-2) s(-1) photosynthetically active radiation (PAR, 400-700 nm) or PAR alone. Leaf anatomy and palisade cell structure were quantified using stereological techniques. The leaves of plants grown under UV-B radiation exhibited an increase in overall leaf width, although no change in leaf anatomy was discerned. Palisade cells in UV-B exposed leaves showed a significant decrease in chloroplast, mitochondrial, starch, and microbody volume density (Vv), while the vacuolar Vv increased compared to cells exposed to PAR only. In UV-B exposed leaves, there was an increase in the appressed and non-appressed thylakoid surface area density (Sv) within the chloroplasts. Since the relative proportion of appressed to non-appressed thylakoid surface area did not change, both thylakoid systems changed in concert with each other. Thylakoid stacks were broader and shorter in leaves subjected to UV-B. In general these responses were similar to those which occurred in plants moved from a high to low PAR environment and similar to mature plants exposed to 13 kJ d(-1) UV-B(BE) for only a short period of time. Although UV absorbing pigments increased by 21% in UV-B exposed leaves, there was no significant difference in chlorophyll a,b or carotenoid content compared to plants exposed to only PAR.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Brassica napus/efectos de la radiación , Rayos Ultravioleta , Brassica napus/citología , Tamaño de la Célula , Cloroplastos/ultraestructura , Relación Dosis-Respuesta en la Radiación , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Hojas de la Planta/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA