Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 389, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671504

RESUMEN

BACKGROUND: Myxoid liposarcoma (MLS) displays a distinctive tumor microenvironment and is characterized by the FUS::DDIT3 fusion oncogene, however, the precise functional contributions of these two elements remain enigmatic in tumor development. METHODS: To study the cell-free microenvironment in MLS, we developed an experimental model system based on decellularized patient-derived xenograft tumors. We characterized the cell-free scaffold using mass spectrometry. Subsequently, scaffolds were repopulated using sarcoma cells with or without FUS::DDIT3 expression that were analyzed with histology and RNA sequencing. RESULTS: Characterization of cell-free MLS scaffolds revealed intact structure and a large variation of protein types remaining after decellularization. We demonstrated an optimal culture time of 3 weeks and showed that FUS::DDIT3 expression decreased cell proliferation and scaffold invasiveness. The cell-free MLS microenvironment and FUS::DDIT3 expression both induced biological processes related to cell-to-cell and cell-to-extracellular matrix interactions, as well as chromatin remodeling, immune response, and metabolism. Data indicated that FUS::DDIT3 expression more than the microenvironment determined the pre-adipocytic phenotype that is typical for MLS. CONCLUSIONS: Our experimental approach opens new means to study the tumor microenvironment in detail and our findings suggest that FUS::DDIT3-expressing tumor cells can create their own extracellular niche.


Asunto(s)
Liposarcoma Mixoide , Proteínas de Fusión Oncogénica , Proteína FUS de Unión a ARN , Microambiente Tumoral , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Liposarcoma Mixoide/patología , Liposarcoma Mixoide/metabolismo , Liposarcoma Mixoide/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Andamios del Tejido/química , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
2.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612833

RESUMEN

Angiosarcoma is a rare and aggressive type of soft-tissue sarcoma with high propensity to metastasize. For patients with metastatic angiosarcoma, prognosis is dismal and treatment options are limited. To improve the outcomes, identifying patients with poor treatment response at an earlier stage is imperative, enabling alternative therapy. Consequently, there is a need for improved methods and biomarkers for treatment monitoring. Quantification of circulating tumor-DNA (ctDNA) is a promising approach for patient-specific monitoring of treatment response. In this case report, we demonstrate that quantification of ctDNA using SiMSen-Seq was successfully utilized to monitor a patient with metastatic angiosarcoma. By quantifying ctDNA levels using 25 patient-specific mutations in blood plasma throughout surgery and palliative chemotherapy, we predicted the outcome and monitored the clinical response to treatment. This was accomplished despite the additional complexity of the patient having a synchronous breast cancer. The levels of ctDNA showed a superior correlation to the clinical outcome compared with the radiological evaluations. Our data propose a promising approach for personalized biomarker analysis to monitor treatment in angiosarcomas, with potential applicability to other cancers and for patients with synchronous malignancies.


Asunto(s)
Neoplasias de la Mama , Hemangiosarcoma , Neoplasias Primarias Secundarias , Sarcoma , Humanos , Femenino , Hemangiosarcoma/genética , Hemangiosarcoma/terapia , Neoplasias de la Mama/genética , Agresión
3.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474205

RESUMEN

Pulmonary adenocarcinoma (ADC) is a very diverse disease, both genetically and histologically, which displays extensive intratumor heterogeneity with numerous acquired mutations. ADC is the most common type of lung cancer and is believed to arise from adenocarcinoma in situ (AIS) which then progresses to minimally invasive adenocarcinoma (MIA). In patients of European ethnicity, we analyzed genetic mutations in AIS (n = 10) and MIA (n = 18) and compared the number of genetic mutations with advanced ADC (n = 2419). Using next-generation sequencing, the number of different mutations detected in both AIS (87.5%) and MIA (94.5%) were higher (p < 0.001) than in advanced ADC (53.7%). In contrast to the high number of mutations in Kirsten rat sarcoma virus gene (KRAS) in advanced ADC (34.6%), there was only one case of AIS with KRAS G12C mutation (3.5%; p < 0.001) and no cases of MIA with KRAS mutation (p < 0.001). In contrast to the modest prevalence of epidermal growth factor receptor (EGFR) mutations in advanced ADC (15.0%), the fraction of EGFR mutant cases was higher in both in AIS (22.2%) and MIA (59.5%; p < 0.001). The EGFR exon 19 deletion mutation was more common in both MIA (50%; n = 6/12) and ADC (41%; n = 149/363), whereas p.L858R was more prevalent in AIS (75%; n = 3/4). In contrast to pulmonary advanced ADC, KRAS driver mutations are less common, whereas mutations in EGFR are more common, in detectable AIS and MIA.


Asunto(s)
Adenocarcinoma in Situ , Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma in Situ/genética , Adenocarcinoma in Situ/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma/patología , Neoplasias Pulmonares/metabolismo , Mutación , Receptores ErbB/metabolismo
4.
Mod Pathol ; 35(6): 767-776, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34969957

RESUMEN

Superficial CD34-positive fibroblastic tumor (SCD34FT) is a recently recognized soft tissue tumor that is considered to be of borderline malignancy. The pathogenesis of this tumor remains incompletely understood, but it has been suggested that SCD34FT overlaps with tumors showing fusions involving the PRDM10 gene. Previous analyses of PRDM10-rearranged tumors have demonstrated that they have a distinct gene expression profile, resulting in high expression of CADM3 (also known as SynCam3), which can be detected immunohistochemically. Here, we investigated a series (n = 43) of SCD34FT or PRDM10-rearranged tumors and potential mimics (n = 226) with regard to morphological, genetic, and immunohistochemical features. The results show that SCD34FT and PRDM10-rearranged tumor are morphologically indistinguishable; 41 of 43 tumors of both entities are CADM3-positive. Hence, we suggest that they constitute a single entity, preferably referred to as SCD34FT. Expression of CADM3 was only rarely seen in other soft tissue tumors, except in tumors with Schwann cell differentiation. Thus, IHC for CADM3, in combination with the characteristic morphological features, is a valuable adjunct in the diagnosis of SCD34FT.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de los Tejidos Blandos , Biomarcadores de Tumor/análisis , Proteínas de Unión al ADN/genética , Humanos , Neoplasias de los Tejidos Blandos/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
5.
Development ; 145(2)2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29361553

RESUMEN

The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1+ cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle.


Asunto(s)
Embrión de Mamíferos/embriología , Glándula Tiroides/embriología , Animales , Embrión de Mamíferos/citología , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Glándula Tiroides/citología
6.
EMBO Rep ; 20(5)2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962207

RESUMEN

Members of the human FET family of RNA-binding proteins, comprising FUS, EWSR1, and TAF15, are ubiquitously expressed and engage at several levels of gene regulation. Many sarcomas and leukemias are characterized by the expression of fusion oncogenes with FET genes as 5' partners and alternative transcription factor-coding genes as 3' partners. Here, we report that the N terminus of normal FET proteins and their oncogenic fusion counterparts interact with the SWI/SNF chromatin remodeling complex. In contrast to normal FET proteins, increased fractions of FET oncoproteins bind SWI/SNF, indicating a deregulated and enhanced interaction in cancer. Forced expression of FET oncogenes caused changes of global H3K27 trimethylation levels, accompanied by altered gene expression patterns suggesting a shift in the antagonistic balance between SWI/SNF and repressive polycomb group complexes. Thus, deregulation of SWI/SNF activity could provide a unifying pathogenic mechanism for the large group of tumors caused by FET fusion oncoproteins. These results may help to develop common strategies for therapy.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Metilación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/genética , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Proteínas de Unión al ARN/genética
7.
Development ; 144(12): 2123-2140, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28634271

RESUMEN

Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed.


Asunto(s)
Glándula Tiroides/embriología , Animales , Evolución Biológica , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Organogénesis/genética , Organogénesis/fisiología , Transducción de Señal , Glándula Tiroides/crecimiento & desarrollo , Glándula Tiroides/fisiología , Hormonas Tiroideas/genética , Hormonas Tiroideas/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
8.
Int J Cancer ; 145(2): 435-449, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650179

RESUMEN

Myxoid liposarcoma (MLS) shows extensive intratumoural heterogeneity with distinct subpopulations of tumour cells. Despite improved survival of MLS patients, existing therapies have shortcomings as they fail to target all tumour cells. The nature of chemotherapy-resistant cells in MLS remains unknown. Here, we show that MLS cell lines contained subpopulations of cells that can form spheres, efflux Hoechst dye and resist doxorubicin, all properties attributed to cancer stem cells (CSCs). By single-cell gene expression, western blot, phospho-kinase array, immunoprecipitation, immunohistochemistry, flow cytometry and microarray analysis we showed that a subset of MLS cells expressed JAK-STAT genes with active signalling. JAK1/2 inhibition via ruxolitinib decreased, while stimulation with LIF increased, phosphorylation of STAT3 and the number of cells with CSC properties indicating that JAK-STAT signalling controlled the number of cells with CSC features. We also show that phosphorylated STAT3 interacted with the SWI/SNF complex. We conclude that MLS contains JAK-STAT-regulated subpopulations of cells with CSC features. Combined doxorubicin and ruxolitinib treatment targeted both proliferating cells as well as cells with CSC features, providing new means to circumvent chemotherapy resistance in treatment of MLS patients.


Asunto(s)
Resistencia a Antineoplásicos , Liposarcoma Mixoide/metabolismo , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Quinasas Janus/metabolismo , Liposarcoma Mixoide/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Nitrilos , Fosforilación , Pirazoles/farmacología , Pirimidinas , Factores de Transcripción STAT/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
9.
Histopathology ; 74(7): 1098-1102, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30735274

RESUMEN

AIMS: Inflammatory myofibroblastic tumour (IMT) is a soft tissue tumour primarily affecting children and young adults. Approximately 50% of IMTs have gene fusions involving the receptor tyrosine kinase (RTK)-encoding ALK gene, providing a molecular rationale for treating IMT patients with unresectable tumours with tyrosine kinase inhibitors (TKI). However, a subset of IMT instead displays fusions affecting other RTKencoding genes, so far including NTRK3, PDGFRB and ROS1. Also, IMTs with variant RTK fusions may respond well to TKI treatment, but can be dif?cult to identify as they are negative for ALK staining at immunohistochemistry, the standard method for detection of ALK rearrangements. MATERIALS AND METHODS: We used RNA-sequencing to search for alternate fusion events in an ALK-negative IMT. RESULTS AND CONCLUSIONS: We found a novel fusion gene - FN1-IGF1R. The FN1 gene, encoding ?bronectin, is thought to provide a strong promoter activity for the kinase domain of the RTK insulin-like growth factor 1 receptor, a mechanism similar to previously described RTK fusions in IMT.


Asunto(s)
Neoplasias Duodenales/genética , Fibronectinas/genética , Miofibroma/genética , Receptor IGF Tipo 1/genética , Neoplasias de los Tejidos Blandos/genética , Adulto , Neoplasias Duodenales/diagnóstico por imagen , Neoplasias Duodenales/patología , Neoplasias Duodenales/cirugía , Fusión Génica , Humanos , Inflamación , Masculino , Miofibroblastos/patología , Miofibroma/diagnóstico por imagen , Miofibroma/patología , Miofibroma/cirugía , Neoplasias de Tejido Muscular , Neoplasias de los Tejidos Blandos/diagnóstico por imagen , Neoplasias de los Tejidos Blandos/patología , Neoplasias de los Tejidos Blandos/cirugía , Tomografía Computarizada por Rayos X
10.
Br J Haematol ; 181(6): 770-781, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29767447

RESUMEN

Diffuse large B cell lymphoma (DLBCL) patients with early relapse or refractory disease have a very poor outcome. Immunochemotherapy resistance will probably, also in the era of targeted drugs, remain the major cause of treatment failure. We used proteomic mass spectrometry to analyse the global protein expression of micro-dissected formalin-fixed paraffin-embedded tumour tissues from 97 DLBCL patients: 44 with primary refractory disease or relapse within 1 year from diagnosis (REF/REL), and 53 who were progression-free more than 5 years after diagnosis (CURED). We identified 2127 proteins: 442 were found in all patients and 102 were differentially expressed. Sixty-five proteins were overexpressed in REF/REL patients, of which 46 were ribosomal proteins (RPs) compared with 2 of the 37 overexpressed proteins in CURED patients (P = 7·6 × 10-10 ). Twenty of 37 overexpressed proteins in CURED patients were associated with actin regulation, compared with 1 of 65 in REF/REL patients (P = 1·4 × 10-9 ). Immunohistochemical staining showed higher expression of RPS5 and RPL17 in REF/REL patients while MARCKS-like protein, belonging to the actin network, was more highly expressed in CURED patients. Even though functional studies aimed at individual proteins and protein interactions to evaluate potential clinical effect are needed, our findings suggest new mechanisms behind immunochemotherapy resistance in DLBCL.


Asunto(s)
Actinas/biosíntesis , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso , Proteínas de Neoplasias/biosíntesis , Proteínas Ribosómicas/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Inmunohistoquímica , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Masculino , Persona de Mediana Edad , Recurrencia
11.
Development ; 142(20): 3519-28, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26395490

RESUMEN

Current understanding infers a neural crest origin of thyroid C cells, the major source of calcitonin in mammals and ancestors to neuroendocrine thyroid tumors. The concept is primarily based on investigations in quail-chick chimeras involving fate mapping of neural crest cells to the ultimobranchial glands that regulate Ca(2+) homeostasis in birds, reptiles, amphibians and fishes, but whether mammalian C cell development involves a homologous ontogenetic trajectory has not been experimentally verified. With lineage tracing, we now provide direct evidence that Sox17+ anterior endoderm is the only source of differentiated C cells and their progenitors in mice. Like many gut endoderm derivatives, embryonic C cells were found to coexpress pioneer factors forkhead box (Fox) a1 and Foxa2 before neuroendocrine differentiation takes place. In the ultimobranchial body epithelium emerging from pharyngeal pouch endoderm in early organogenesis, differential Foxa1/Foxa2 expression distinguished two spatially separated pools of C cell precursors with different growth properties. A similar expression pattern was recapitulated in medullary thyroid carcinoma cells in vivo, consistent with a growth-promoting role of Foxa1. In contrast to embryonic precursor cells, C cell-derived tumor cells invading the stromal compartment downregulated Foxa2, foregoing epithelial-to-mesenchymal transition designated by loss of E-cadherin; both Foxa2 and E-cadherin were re-expressed at metastatic sites. These findings revise mammalian C cell ontogeny, expand the neuroendocrine repertoire of endoderm and redefine the boundaries of neural crest diversification. The data further underpin distinct functions of Foxa1 and Foxa2 in both embryonic and tumor development.


Asunto(s)
Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/citología , Glándula Tiroides/citología , Glándula Tiroides/embriología , Animales , Calcitonina/metabolismo , Calcio/metabolismo , Carcinoma Medular/metabolismo , Diferenciación Celular , Endodermo/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Células Madre/citología , Neoplasias de la Tiroides/metabolismo
12.
Front Oncol ; 14: 1396285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884086

RESUMEN

Background: KRAS mutation status is a well-established independent prognostic factor in advanced non-small cell lung cancer (NSCLC), yet its role in early-stage disease is unclear. Here, we investigate the prognostic value of combining survival data on KRAS mutation status and tumor size in stage I-II NSCLC. Methods: We studied the combined impact of KRAS mutational status and tumor size on overall survival (OS) in patients with stage I-II NSCLC. We performed a retrospective study including 310 diagnosed patients with early (stage I-II) NSCLCs. All molecularly assessed patients diagnosed with stage I-II NSCLC between 2016-2018 in the Västra Götaland Region of western Sweden were screened in this multi-center retrospective study. The primary study outcome was overall survival. Results: Out of 310 patients with stage I-II NSCLC, 37% harbored an activating mutation in the KRAS gene. Our study confirmed staging and tumor size as prognostic factors. However, KRAS mutational status was not found to impact OS and there was no difference in the risk of death when combining KRAS mutational status and primary tumor size. Conclusions: In our patient cohort, KRAS mutations in combination with primary tumor size did not impact prognosis in stage I-II NSCLC.

13.
Dev Biol ; 366(2): 142-52, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22537491

RESUMEN

Regulated cell death, defined in morphological terms as apoptosis, is crucial for organ morphogenesis. While differentiation of the thyroid gland has been extensively studied, nothing is yet known about the survival mechanisms involved in the development of this endocrine gland. Using the zebrafish model system, we aim to understand whether genes belonging to the Bcl-2 family that control apoptosis are implicated in regulation of cell survival during thyroid development. Evidence of strong Bcl-2 gene expression in mouse thyroid precursors prompted us to investigate the functions played by its zebrafish homologs during thyroid development. We show that the bcl2-like (bcl2l) gene is expressed in the zebrafish thyroid primordium. Morpholino-mediated knockdown and mutant analyses revealed that bcl2l is crucial for thyroid cell survival and that this function is tightly modulated by the transcription factors pax2a, nk2.1a and hhex. Also, the bcl2l gene appears to control a caspase-3-dependent apoptotic mechanism during thyroid development. Thyroid precursor cells require an actively maintained survival mechanism to properly proceed through development. The bcl2l gene operates in the inhibition of cell death under direct regulation of a thyroid specific set of transcription factors. This is the first demonstration of an active mechanism to ensure survival of the thyroid primordium during morphogenesis.


Asunto(s)
Genes bcl-2 , Glándula Tiroides/embriología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Proteína bcl-X/fisiología , Animales , Supervivencia Celular , Morfogénesis , Glándula Tiroides/fisiología , Factores de Transcripción/fisiología
14.
iScience ; 26(7): 107071, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534159

RESUMEN

Cells of origin in cancer determine tumor phenotypes, but whether lineage-defining transcription factors might influence tissue specificity of tumorigenesis among organs with similar developmental traits are unknown. We demonstrate here that tumor development and progression markedly differ in lung and thyroid targeted by Braf mutation in Nkx2.1CreERT2 mice heterozygous for Nkx2-1. In absence of tamoxifen, non-induced Nkx2.1CreERT2;BrafCA/+ mutants developed multiple full-blown lung adenocarcinomas with a latency of 1-3 months whereas thyroid tumors were rare and constrained, although minute BrafCA activation documented by variant allele sequencing was similar in both tissues. Induced oncogene activation accelerated neoplastic growth only in the lungs. By contrast, NKX2-1+ progenitor cells were equally responsive to constitutive expression of mutant Braf during lung and thyroid development. Both lung and thyroid cells transiently downregulated NKX2-1 in early tumor stages. These results indicate that BRAFV600E-induced tumorigenesis obey organ-specific traits that might be differentially modified by a shared lineage factor.

15.
EBioMedicine ; 94: 104691, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37480626

RESUMEN

BACKGROUND: Radiotherapy is effective in the treatment of cancer but also causes damage to non-cancerous tissue. Pelvic radiotherapy may produce chronic and debilitating bowel symptoms, yet the underlying pathophysiology is still undefined. Most notably, although pelvic radiotherapy causes an acute intestinal inflammation there is no consensus on whether the late-phase pathophysiology contains an inflammatory component or not. To address this knowledge gap, we examined the potential presence of a chronic inflammation in mucosal biopsies from irradiated pelvic cancer survivors. METHODS: We biopsied 24 cancer survivors two to 20 years after pelvic radiotherapy, and four non-irradiated controls. Using tandem mass tag (TMT) mass spectrometry and mRNA sequencing (mRNA-seq), we charted proteomic and transcriptomic profiles of the mucosal tissue previously exposed to a high or a low/no dose of radiation. Changes in the immune cell populations were determined with flow cytometry. The integrity of the protective mucus layers were determined by permeability analysis and 16S rRNA bacterial detection. FINDINGS: 942 proteins were differentially expressed in mucosa previously exposed to a high radiation dose compared to a low radiation dose. The data suggested a chronic low-grade inflammation with neutrophil activity, which was confirmed by mRNA-seq and flow cytometry and further supported by findings of a weakened mucus barrier with bacterial infiltration. INTERPRETATION: Our results challenge the idea that pelvic radiotherapy causes an acute intestinal inflammation that either heals or turns fibrotic without progression to chronic inflammation. This provides a rationale for exploring novel strategies to mitigate chronic bowel symptoms in pelvic cancer survivors. FUNDING: This study was supported by the King Gustav V Jubilee Clinic Cancer Foundation (CB), The Adlerbertska Research Foundation (CB), The Swedish Cancer Society (GS), The Swedish State under the ALF agreement (GS and CB), Mary von Sydow's foundation (MA and VP).

16.
JCO Precis Oncol ; 7: e2300039, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37384868

RESUMEN

PURPOSE: Several studies have indicated that broad genomic characterization of childhood cancer provides diagnostically and/or therapeutically relevant information in selected high-risk cases. However, the extent to which such characterization offers clinically actionable data in a prospective broadly inclusive setting remains largely unexplored. METHODS: We implemented prospective whole-genome sequencing (WGS) of tumor and germline, complemented by whole-transcriptome sequencing (RNA-Seq) for all children diagnosed with a primary or relapsed solid malignancy in Sweden. Multidisciplinary molecular tumor boards were set up to integrate genomic data in the clinical decision process along with a medicolegal framework enabling secondary use of sequencing data for research purposes. RESULTS: During the study's first 14 months, 118 solid tumors from 117 patients were subjected to WGS, with complementary RNA-Seq for fusion gene detection in 52 tumors. There was no significant geographic bias in patient enrollment, and the included tumor types reflected the annual national incidence of pediatric solid tumor types. Of the 112 tumors with somatic mutations, 106 (95%) exhibited alterations with a clear clinical correlation. In 46 of 118 tumors (39%), sequencing only corroborated histopathological diagnoses, while in 59 cases (50%), it contributed to additional subclassification or detection of prognostic markers. Potential treatment targets were found in 31 patients (26%), most commonly ALK mutations/fusions (n = 4), RAS/RAF/MEK/ERK pathway mutations (n = 14), FGFR1 mutations/fusions (n = 5), IDH1 mutations (n = 2), and NTRK2 gene fusions (n = 2). In one patient, the tumor diagnosis was revised based on sequencing. Clinically relevant germline variants were detected in 8 of 94 patients (8.5%). CONCLUSION: Up-front, large-scale genomic characterization of pediatric solid malignancies provides diagnostically valuable data in the majority of patients also in a largely unselected cohort.


Asunto(s)
Carcinoma , Medicina de Precisión , Humanos , Niño , Recurrencia Local de Neoplasia , Fusión Génica , Genómica
17.
Dev Biol ; 359(2): 163-75, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21924257

RESUMEN

The thyroid and lungs originate as neighboring bud shaped outgrowths from the midline of the embryonic foregut. When and how organ specific programs regulate development into structures of distinct shapes, positions and functions is incompletely understood. To characterize, at least in part, the genetic basis of these events, we have employed laser capture microdissection and microarray analysis to define gene expression in the mouse thyroid and lung primordia at E10.5. By comparing the transcriptome of each bud to that of the whole embryo as well as to each other, we broadly describe the genes that are preferentially expressed in each developing organ as well as those with an enriched expression common to both. The results thus obtained provide a valuable resource for further analysis of genes previously unrecognized to participate in thyroid and lung morphogenesis and to discover organ specific as well as common developmental mechanisms. As an initial step in this direction we describe a regulatory pathway involving the anti-apoptotic gene Bcl2 that controls cell survival in early thyroid development.


Asunto(s)
Embrión de Mamíferos/metabolismo , Pulmón/metabolismo , Glándula Tiroides/metabolismo , Transcriptoma , Animales , Tipificación del Cuerpo/genética , Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Embrión de Mamíferos/embriología , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Captura por Microdisección con Láser , Pulmón/embriología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Organogénesis/genética , Glándula Tiroides/embriología , Factores de Tiempo
18.
Sci Rep ; 12(1): 5971, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396490

RESUMEN

Accurate pretreatment grading of pancreatic neuroendocrine tumors (PanNETs) is important to guide patient management. We aimed to evaluate endoscopic ultrasound-guided fine needle biopsy sampling (EUS-FNB) for the preoperative diagnosis and grading of PanNETs. In a tertiary-center setting, patients with suspected PanNETs were prospectively subjected to 22-gauge, reverse-bevel EUS-FNB. The EUS-FNB samples (Ki-67EUS) and corresponding surgical specimens (Ki-67SURG) were analyzed with Ki-67 indexing and thereafter tumor grading, (GRADEEUS) and (GRADESURG) respectively. In total 52 PanNET-patients [median age: 66 years; females: 25/52; surgical resection 22/52 (42%)] were included. EUS-FNB was diagnostic in 44/52 (85%). In 42 available FNB-slides, the median neoplastic cell count was 1034 (IQR: 504-3667) with 32/42 (76%), 22/42 (52%), and 14/42 (33%) cases exceeding 500, 1000, and 2000 neoplastic cells respectively. Ki-67SURG was significantly higher compared to Ki-67EUS with a moderate correlation comparing Ki-67EUS and Ki-67SURG (Pearson r = 0.60, r2 = 0.36, p = 0.011). The GRADEEUS had a weak level of agreement (κ = 0.08) compared with GRADESURG. Only 2/12 (17%) G2-tumors were correctly graded in EUS-FNB-samples. EUS-guided fine needle biopsy sampling is sensitive for preoperative diagnosis of PanNET but biopsy quality is relatively poor. Therefore, the approach seems suboptimal for pretreatment grading of PanNET.


Asunto(s)
Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Anciano , Femenino , Humanos , Antígeno Ki-67/análisis , Masculino , Clasificación del Tumor , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Estudios Prospectivos
19.
Cancers (Basel) ; 14(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35565194

RESUMEN

There is an urgent need to identify new predictive biomarkers for treatment response to both platinum doublet chemotherapy (PT) and immune checkpoint blockade (ICB). Here, we evaluated whether treatment outcome could be affected by KRAS mutational status in patients with metastatic (Stage IV) non-small cell lung cancer (NSCLC). All consecutive patients molecularly assessed and diagnosed between 2016−2018 with Stage IV NSCLC in the region of West Sweden were included in this multi-center retrospective study. The primary study outcome was overall survival (OS). Out of 580 Stage IV NSCLC patients, 35.5% harbored an activating mutation in the KRAS gene (KRASMUT). Compared to KRAS wild-type (KRASWT), KRASMUT was a negative factor for OS (p = 0.014). On multivariate analysis, KRASMUT persisted as a negative factor for OS (HR 1.478, 95% CI 1.207−1.709, p < 0.001). When treated with first-line platinum doublet (n = 195), KRASMUT was a negative factor for survival (p = 0.018), with median OS of 9 months vs. KRASWT at 11 months. On multivariate analysis, KRASMUT persisted as a negative factor for OS (HR 1.564, 95% CI 1.124−2.177, p = 0.008). KRASMUT patients with high PD-L1 expression (PD-L1high) had better OS than PD-L1highKRASWT patients (p = 0.036). In response to first-line ICB, KRASMUT patients had a significantly (p = 0.006) better outcome than KRASWT patients, with a median OS of 23 vs. 6 months. On multivariable Cox analysis, KRASMUT status was an independent prognostic factor for better OS (HR 0.349, 95% CI 0.148−0.822, p = 0.016). kRAS mutations are associated with better response to treatment with immune checkpoint blockade and worse response to platinum doublet chemotherapy as well as shorter general OS in Stage IV NSCLC.

20.
Mol Oncol ; 16(13): 2470-2495, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35182012

RESUMEN

FET fusion oncoproteins containing one of the FET (FUS, EWSR1, TAF15) family proteins juxtaposed to alternative transcription-factor partners are characteristic of more than 20 types of sarcoma and leukaemia. FET oncoproteins bind to the SWI/SNF chromatin remodelling complex, which exists in three subtypes: cBAF, PBAF and GBAF/ncBAF. We used comprehensive biochemical analysis to characterize the interactions between FET oncoproteins, SWI/SNF complexes and the transcriptional coactivator BRD4. Here, we report that FET oncoproteins bind all three main SWI/SNF subtypes cBAF, PBAF and GBAF, and that FET oncoproteins interact indirectly with BRD4 via their shared interaction partner SWI/SNF. Furthermore, chromatin immunoprecipitation sequencing and proteomic analysis showed that FET oncoproteins, SWI/SNF components and BRD4 co-localize on chromatin and interact with mediator and RNA Polymerase II. Our results provide a possible molecular mechanism for the FET-fusion-induced oncogenic transcriptional profiles and may lead to novel therapies targeting aberrant SWI/SNF complexes and/or BRD4 in FET-fusion-caused malignancies.


Asunto(s)
Ensamble y Desensamble de Cromatina , Sarcoma , Proteínas de Ciclo Celular/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteómica , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA