Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
CrystEngComm ; 26(8): 1071-1076, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38384732

RESUMEN

Precise control over the crystalline phase and crystallographic orientation within thin films of metal-organic frameworks (MOFs) is highly desirable. Here, we report a comparison of the liquid- and vapour-phase film deposition of two copper-dicarboxylate MOFs starting from an oriented metal hydroxide precursor. X-ray diffraction revealed that the vapour- or liquid-phase reaction of the linker with this precursor results in different crystalline phases, morphologies, and orientations. Pole figure analysis showed that solution-based growth of the MOFs follows the axial texture of the metal hydroxide precursor, resulting in heteroepitaxy. In contrast, the vapour-phase method results in non-epitaxial growth with uniplanar texture only.

2.
ACS Appl Mater Interfaces ; 16(8): 9900-9907, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38344949

RESUMEN

Organophosphate (OP) toxicity is related to inhibition of acetylcholinesterase (AChE) activity, which plays a key role in the neurotransmission process. In this work, we report the ability of different zinc zeolitic imidazolate frameworks (ZIFs) to behave as potential antidotes against OP poisoning. The Zn-L coordination bond (L = purine, benzimidazole, imidazole, or 2-methylimidazole) is sensitive to the G-type nerve agent model compounds diisopropylfluorophosphate (DIFP) and diisopropylchlorophosphate, leading to P-X (X = F or Cl) bond breakdown into nontoxic diisopropylphosphate. P-X hydrolysis is accompanied by ZIF structural degradation (Zn-imidazolate bond hydrolysis), with the concomitant release of the imidazolate linkers and zinc ions representing up to 95% of ZIF particle dissolution. The delivered imidazolate nucleophilic attack on the OP@AChE adduct gives rise to the recovery of AChE enzymatic function. P-X bond breakdown, ZIF structural degradation, and AChE reactivation are dependent on imidazolate linker nucleophilicity, framework topology, and particle size. The best performance is obtained for 20 nm nanoparticles (NPs) of Zn(2-methylimidazolate)2 (sod ZIF-8) exhibiting a DIFP degradation half-life of 2.6 min and full recovery of AChE activity within 1 h. 20 nm sod ZIF-8 NPs are not neurotoxic, as proven by in vitro neuroblastoma cell culture viability tests.


Asunto(s)
Acetilcolinesterasa , Zeolitas , Acetilcolinesterasa/química , Organofosfatos/toxicidad , Zeolitas/química , Antídotos/química , Compuestos Orgánicos , Zinc/química
3.
Adv Mater ; : e2404384, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943469

RESUMEN

Films and patterns of 3D-oriented metal-organic frameworks (MOFs) afford well-ordered pore structures extending across centimeter-scale areas. These macroscopic domains of aligned pores are pivotal to enhance diffusion along specific pathways and orient functional guests. The anisotropic properties emerging from this alignment are beneficial for applications in ion conductivity and photonics. However, the structure of 3D-oriented MOF films and patterns can rapidly degrade under humid and acidic conditions. Thus, more durable 3D-ordered porous systems are desired for practical applications. Here, oriented porous polymer films and patterns are prepared by using heteroepitaxially oriented N3-functionalized MOF films as precursor materials. The film fabrication protocol utilizes an azide-alkyne cycloaddition on the Cu2(AzBPDC)2DABCO MOF. The micropatterning protocol exploits the X-ray sensitivity of azide groups in Cu2(AzBPDC)2DABCO, enabling selective degradation in the irradiated areas. The masked regions of the MOF film retain their N3-functionality, allowing for subsequent cross-linking through azide-alkyne coupling. Subsequent acidic treatment removes the Cu ions from the MOF, yielding porous polymer micro-patterns. The polymer has high chemical stability and shows an anisotropic fluorescent response. The use of 3D-oriented MOF systems as precursors for the fabrication of oriented porous polymers will facilitate the progress of optical components for photonic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA