Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 61(40): 16110-16121, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36177719

RESUMEN

Rare-earth elements are widely used in high-end technologies, the production of permanent magnets (PMs) being one of the sectors with the greatest current demand and likely greater future demand. The combination of Nd and Dy in NdFeB PMs enhances their magnetic properties but makes their recycling more challenging. Due to the similar chemical properties of Nd and Dy, their separation is expensive and currently limited to the small scale. It is therefore crucially important to devise efficient and selective methods that can recover and then reuse those critical metals. To address these issues, a series of heptadentate Trensal-based ligands were used for the complexation of Dy3+ and Nd3+ ions, with the goal of indicating the role of coordination and solubility equilibria in the selective precipitation of Ln3+-metal complexes from multimetal non-water solutions. Specifically, for a 1:1 Nd/Dy mixture, a selective and fast precipitation of the Dy complex occurred in acetone with the Trensalp-OMe ligand at room temperature, with a concomitant enrichment of Nd in the solution phase. In acetone, complexes of Nd and Dy with Trensalp-OMe were characterized by very similar formation constants of 7.0(2) and 7.3(2), respectively. From the structural analysis of an array of Dy and Nd complexes with TrensalR ligands, we showed that Dy invariably provided complexes with coordination number (cn) of 7, whereas the larger Nd experienced an expansion of the coordination sphere by recruiting additional solvent molecules and giving a cn of >7. The significant structural differences have been identified as the main premises upon which a suitable separation strategy can be devised with these kind of ligands, as well as other preorganized polydentate ligands that can exploit the small differences in Ln3+ coordination requirements.


Asunto(s)
Complejos de Coordinación , Acetona , Complejos de Coordinación/química , Iones/química , Ligandos , Solventes
2.
ChemSusChem ; : e202400286, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38786929

RESUMEN

Permanent magnets (PMs) containing rare earth elements (REEs) can generate energy in a sustainable manner. With an anticipated tenfold increase in REEs demand by 2050, one of the crucial strategies to meet the demand is developing of efficient recycling methods. NdFeB PMs are the most widely employed, however, the similar chemical properties of Nd (20-30 % wt.) and Dy (0-10 % wt.) make their recycling challenging, but possible using appropriate ligands. In this work, we investigated commercially available 8-hydroxyquinolines (HQs) as potential Fe/Nd/Dy complexing agents enabling metal separation by selective precipitation playing on specific structure/property (solubility) relationship. Specifically, test ethanolic solutions of nitrate salts, prepared to mimic the main components of a PM leachate, were treated with functionalized HQs. We demonstrated that Fe3+ can be separated as insoluble [Fe(QCl,I)3] from soluble [REE(QCl,I)4]- complexes (QCl,I -: 5-Cl-7-I-8-hydoxyquinolinate). Following that, QCl - (5-Cl-8-hydroxyquinolinate) formed insoluble [Nd3(QCl)9] and soluble (Bu4N)[Dy(QCl)4]. The process ultimately gave a solution phase containing Dy with only traces of Nd. In a preliminary attempt to assess the potentiality of a low environmental impact process, REEs were recovered as oxalates, while the ligands as well as Bu4N+ ions, were regenerated and internally reused, thus contributing to the sustainability of a possible metal recovery process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA