Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Fish Shellfish Immunol ; 89: 117-126, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30928664

RESUMEN

Inflammation plays a crucial role in cardiac regeneration. Numerous advantages, including a robust regenerative ability, make the zebrafish a popular model to study cardiovascular diseases. The zebrafish breakdance (bre) mutant shares several key features with human long QT syndrome that predisposes to ventricular arrhythmias and sudden death. However, how inflammatory response and tissue regeneration following cardiac damage occur in bre mutant is unknown. Here, we have found that inflammatory response related genes were markedly expressed in the injured heart and excessive leukocyte accumulation occurred in the injured area of the bre mutant zebrafish. Furthermore, bre mutant zebrafish exhibited aberrant apoptosis and impaired heart regenerative ability after ventricular cryoinjury. Mild dosages of anti-inflammatory or prokinetic drugs protected regenerative cells from undergoing aberrant apoptosis and promoted heart regeneration in bre mutant zebrafish. We propose that immune or prokinetic therapy could be a potential therapeutic regimen for patients with genetic long QT syndrome who suffers from myocardial infarction.


Asunto(s)
Regulación hacia Abajo , Lesiones Cardíacas/fisiopatología , Inflamación/fisiopatología , Regeneración , Pez Cebra/fisiología , Animales , Frío/efectos adversos , Modelos Animales de Enfermedad , Corazón , Lesiones Cardíacas/etiología , Inflamación/etiología
2.
Nat Commun ; 13(1): 3749, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768470

RESUMEN

Insulin sensitivity progressively declines with age. Currently, the mechanism underlying age-associated insulin resistance remains unknown. Here, we identify membrane-bound matrix metalloproteinase 14 (MT1-MMP/MMP14) as a central regulator of insulin sensitivity during ageing. Ageing promotes MMP14 activation in insulin-sensitive tissues, which cleaves Insulin Receptor to suppress insulin signaling. MT1-MMP inhibition restores Insulin Receptor expression, improving insulin sensitivity in aged mice. The cleavage of Insulin Receptor by MT1-MMP also contributes to obesity-induced insulin resistance and inhibition of MT1-MMP activities normalizes metabolic dysfunctions in diabetic mouse models. Conversely, overexpression of MT1-MMP in the liver reduces the level of Insulin Receptor, impairing hepatic insulin sensitivity in young mice. The soluble Insulin Receptor and circulating MT1-MMP are positively correlated in plasma from aged human subjects and non-human primates. Our findings provide mechanistic insights into regulation of insulin sensitivity during physiological ageing and highlight MT1-MMP as a promising target for therapeutic avenue against diabetes.


Asunto(s)
Resistencia a la Insulina , Metaloproteinasa 14 de la Matriz , Receptor de Insulina , Factores de Edad , Animales , Humanos , Insulina/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Receptor de Insulina/metabolismo , Transducción de Señal
3.
Nat Metab ; 4(2): 203-212, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35177851

RESUMEN

GDNF-family receptor a-like (GFRAL) has been identified as the cognate receptor of growth/differentiation factor 15 (GDF15/MIC-1), considered a key signaling axis in energy homeostasis and body weight regulation. Currently, little is known about the physiological regulation of the GDF15-GFRAL signaling pathway. Here we show that membrane-bound matrix metalloproteinase 14 (MT1-MMP/MMP14) is an endogenous negative regulator of GFRAL in the context of obesity. Overnutrition-induced obesity increased MT1-MMP activation, which proteolytically inactivated GFRAL to suppress GDF15-GFRAL signaling, thus modulating the anorectic effects of the GDF15-GFRAL axis in vivo. Genetic ablation of MT1-MMP specifically in GFRAL+ neurons restored GFRAL expression, resulting in reduced weight gain, along with decreased food intake in obese mice. Conversely, depletion of GFRAL abolished the anti-obesity effects of MT1-MMP inhibition. MT1-MMP inhibition also potentiated GDF15 activity specifically in obese phenotypes. Our findings identify a negative regulator of GFRAL for the control of non-homeostatic body weight regulation, provide mechanistic insights into the regulation of GDF15 sensitivity, highlight negative regulators of the GDF15-GFRAL pathway as a therapeutic avenue against obesity and identify MT1-MMP as a promising target.


Asunto(s)
Metaloproteinasa 14 de la Matriz , Obesidad , Animales , Anorexia/metabolismo , Peso Corporal , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Metaloproteinasa 14 de la Matriz/uso terapéutico , Ratones , Obesidad/metabolismo
4.
J Endocrinol ; 245(1): 39-51, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31977314

RESUMEN

Sexual differences have been observed in the onset and prognosis of human cardiovascular diseases, but the underlying mechanisms are not clear. Here, we found that zebrafish heart regeneration is faster in females, can be accelerated by estrogen and is suppressed by the estrogen-antagonist tamoxifen. Injuries to the zebrafish heart, but not other tissues, increased plasma estrogen levels and the expression of estrogen receptors, especially esr2a. The resulting endocrine disruption induces the expression of the female-specific protein vitellogenin in male zebrafish. Transcriptomic analyses suggested heart injuries triggered pronounced immune and inflammatory responses in females. These responses, previously shown to elicit heart regeneration, could be enhanced by estrogen treatment in males and reduced by tamoxifen in females. Furthermore, a prior exposure to estrogen preconditioned the zebrafish heart for an accelerated regeneration. Altogether, this study reveals that heart regeneration is modulated by an estrogen-inducible inflammatory response to cardiac injury. These findings elucidate a previously unknown layer of control in zebrafish heart regeneration and provide a new model system for the study of sexual differences in human cardiac repair.


Asunto(s)
Estrógenos/farmacología , Corazón/efectos de los fármacos , Interferón gamma/metabolismo , Regeneración/efectos de los fármacos , Pez Cebra/fisiología , Animales , Antagonistas de Estrógenos/farmacología , Femenino , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Corazón/fisiología , Humanos , Mediadores de Inflamación/metabolismo , Interferón gamma/genética , Masculino , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Regeneración/genética , Regeneración/fisiología , Factores Sexuales , Tamoxifeno/farmacología , Vitelogeninas/genética , Vitelogeninas/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA