Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 13(4): 400-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24633343

RESUMEN

The interface between plant organelles and non-biological nanostructures has the potential to impart organelles with new and enhanced functions. Here, we show that single-walled carbon nanotubes (SWNTs) passively transport and irreversibly localize within the lipid envelope of extracted plant chloroplasts, promote over three times higher photosynthetic activity than that of controls, and enhance maximum electron transport rates. The SWNT-chloroplast assemblies also enable higher rates of leaf electron transport in vivo through a mechanism consistent with augmented photoabsorption. Concentrations of reactive oxygen species inside extracted chloroplasts are significantly suppressed by delivering poly(acrylic acid)-nanoceria or SWNT-nanoceria complexes. Moreover, we show that SWNTs enable near-infrared fluorescence monitoring of nitric oxide both ex vivo and in vivo, thus demonstrating that a plant can be augmented to function as a photonic chemical sensor. Nanobionics engineering of plant function may contribute to the development of biomimetic materials for light-harvesting and biochemical detection with regenerative properties and enhanced efficiency.


Asunto(s)
Arabidopsis/química , Arabidopsis/fisiología , Cloroplastos/química , Cloroplastos/fisiología , Nanotubos de Carbono/química , Fotosíntesis/fisiología , Arabidopsis/efectos de la radiación , Biónica/métodos , Cloroplastos/efectos de la radiación , Luz , Nanotecnología/métodos , Nanotubos de Carbono/efectos de la radiación , Nanotubos de Carbono/ultraestructura , Fotosíntesis/efectos de la radiación
2.
ChemSusChem ; 5(11): 2181-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22927114

RESUMEN

Silylamine reversible ionic liquids were designed to achieve specific physical properties in order to address effective CO2 capture. The reversible ionic liquid systems reported herein represent a class of switchable solvents where a relatively non-polar silylamine (molecular liquid) is reversibly transformed to a reversible ionic liquid (RevIL) by reaction with CO2 (chemisorption). The RevILs can further capture additional CO2 through physical absorption (physisorption). The effects of changes in structure on (1) the CO2 capture capacity (chemisorption and physisorption), (2) the viscosity of the solvent systems at partial and total conversion to the ionic liquid state, (3) the energy required for reversing the CO2 capture process, and (4) the ability to recycle the solvents systems are reported.


Asunto(s)
Aminas/química , Aminas/síntesis química , Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Fenómenos Físicos , Solventes/química , Solventes/síntesis química , Adsorción , Técnicas de Química Sintética , Líquidos Iónicos/química , Temperatura , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA