Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
N Engl J Med ; 369(9): 819-29, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23984729

RESUMEN

BACKGROUND: Transthyretin amyloidosis is caused by the deposition of hepatocyte-derived transthyretin amyloid in peripheral nerves and the heart. A therapeutic approach mediated by RNA interference (RNAi) could reduce the production of transthyretin. METHODS: We identified a potent antitransthyretin small interfering RNA, which was encapsulated in two distinct first- and second-generation formulations of lipid nanoparticles, generating ALN-TTR01 and ALN-TTR02, respectively. Each formulation was studied in a single-dose, placebo-controlled phase 1 trial to assess safety and effect on transthyretin levels. We first evaluated ALN-TTR01 (at doses of 0.01 to 1.0 mg per kilogram of body weight) in 32 patients with transthyretin amyloidosis and then evaluated ALN-TTR02 (at doses of 0.01 to 0.5 mg per kilogram) in 17 healthy volunteers. RESULTS: Rapid, dose-dependent, and durable lowering of transthyretin levels was observed in the two trials. At a dose of 1.0 mg per kilogram, ALN-TTR01 suppressed transthyretin, with a mean reduction at day 7 of 38%, as compared with placebo (P=0.01); levels of mutant and nonmutant forms of transthyretin were lowered to a similar extent. For ALN-TTR02, the mean reductions in transthyretin levels at doses of 0.15 to 0.3 mg per kilogram ranged from 82.3 to 86.8%, with reductions of 56.6 to 67.1% at 28 days (P<0.001 for all comparisons). These reductions were shown to be RNAi-mediated. Mild-to-moderate infusion-related reactions occurred in 20.8% and 7.7% of participants receiving ALN-TTR01 and ALN-TTR02, respectively. CONCLUSIONS: ALN-TTR01 and ALN-TTR02 suppressed the production of both mutant and nonmutant forms of transthyretin, establishing proof of concept for RNAi therapy targeting messenger RNA transcribed from a disease-causing gene. (Funded by Alnylam Pharmaceuticals; ClinicalTrials.gov numbers, NCT01148953 and NCT01559077.).


Asunto(s)
Neuropatías Amiloides Familiares/terapia , Prealbúmina/genética , ARN Interferente Pequeño/uso terapéutico , Adolescente , Adulto , Neuropatías Amiloides Familiares/genética , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Liposomas , Macaca fascicularis , Masculino , Nanocápsulas , Prealbúmina/metabolismo , ARN Interferente Pequeño/administración & dosificación , Adulto Joven
2.
Cancer Discov ; 3(4): 406-17, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23358650

RESUMEN

UNLABELLED: RNA interference (RNAi) is a potent and specific mechanism for regulating gene expression. Harnessing RNAi to silence genes involved in disease holds promise for the development of a new class of therapeutics. Delivery is key to realizing the potential of RNAi, and lipid nanoparticles (LNP) have proved effective in delivery of siRNAs to the liver and to tumors in animals. To examine the activity and safety of LNP-formulated siRNAs in humans, we initiated a trial of ALN-VSP, an LNP formulation of siRNAs targeting VEGF and kinesin spindle protein (KSP), in patients with cancer. Here, we show detection of drug in tumor biopsies, siRNA-mediated mRNA cleavage in the liver, pharmacodynamics suggestive of target downregulation, and antitumor activity, including complete regression of liver metastases in endometrial cancer. In addition, we show that biweekly intravenous administration of ALN-VSP was safe and well tolerated. These data provide proof-of-concept for RNAi therapeutics in humans and form the basis for further development in cancer. SIGNIFICANCE: The fi ndings in this report show safety, pharmacokinetics, RNAi mechanism of action, and clinical activity with a novel fi rst-in-class LNP-formulated RNAi therapeutic in patients with cancer. The ability to harness RNAi to facilitate specifi c multitargeting, as well as increase the number of druggable targets, has important implications for future drug development in oncology.


Asunto(s)
Cinesinas/genética , Neoplasias Hepáticas/terapia , Nanopartículas/administración & dosificación , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/genética , Adulto , Anciano , Animales , Línea Celular Tumoral , Citocinas/sangre , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA