RESUMEN
Serum troponin is often elevated in patients with acute stroke and its mechanism is unknown. In a retrospective single-center cohort study, we evaluated the association between stroke severity and serum troponin in 187 patients with acute stroke using multivariable modified Poisson models. A one-point increase in the National Institutes of Health Stroke Scale (measure of stroke severity) was associated with a marginally higher serum troponin level in adjusted models (aIRR 1.03; 1.01-1.05, P = 0.001). The modest, yet potentially independent, association between stroke severity and serum troponins could suggest a neurogenic basis for a cardiac injury in patients with acute stroke.
RESUMEN
The field of radiomics is at the forefront of personalized medicine. However, there is concern that high variation in imaging parameters will impact robustness of radiomic features and subsequently the performance of the predictive models built upon them. Therefore, our review aims to evaluate the impact of imaging parameters on the robustness of radiomic features. We also provide insights into the validity and discrepancy of different methodologies applied to investigate the robustness of radiomic features. We selected 47 papers based on our predefined inclusion criteria and grouped these papers by the imaging parameter under investigation: (i) scanner parameters, (ii) acquisition parameters and (iii) reconstruction parameters. Our review highlighted that most of the imaging parameters are disruptive parameters, and shape along with First order statistics were reported as the most robust radiomic features against variation in imaging parameters. This review identified inconsistencies related to the methodology of the reviewed studies such as the metrics used for robustness, the feature extraction techniques, the reporting style, and their outcome inclusion. We hope this review will aid the scientific community in conducting research in a way that is more reproducible and avoids the pitfalls of previous analyses.
Asunto(s)
Benchmarking , Tomografía Computarizada por Rayos X , Reproducibilidad de los ResultadosRESUMEN
Importance: Approximately 1 in 5 patients with breast cancer who undergo axillary lymph node dissection will develop lymphedema. To appropriately triage and monitor these patients for timely diagnosis and treatment, robust risk models are required. Objective: To evaluate the prognostic value of mammographic breast density in estimating lymphedema severity. Design, Setting, and Participants: This prognostic study collected data from July 16, 2018, to March 3, 2020, from the electronic health records of patients of the Cancer Rehabilitation and Survivorship Program at the Princess Margaret Cancer Centre in Toronto, Ontario, Canada. Participants included women who had completed curative treatment for a first diagnosis of breast cancer and who were referred to the program. Also included were a sample of patients in the general breast oncology population who were receiving follow-up care at the center during the same period but who were not referred to the program. All patients attended follow-up appointments at the Princess Margaret Cancer Centre from January 1, 2016, to May 1, 2018. The cohort was randomly split 2:1 to group patients into a training cohort and a validation cohort. Exposures: Participant demographic and clinical characteristics included age, sex, body mass index (BMI), medical history, cancer characteristics, and cancer treatment. Main Outcomes and Measures: Spearman correlation coefficient between measured and predicted volume of lymphedema was calculated. Area under the curve (AUC) values were generated for predicting the occurrence of at least mild lymphedema (volume, >200 mL) and severe lymphedema (volume, >500 mL) at the time of initial lymphedema diagnosis. Results: A total of 373 female patients (median [interquartile range] age, 52.3 [45.9-60.1] years) were eligible for this analysis. Multivariate linear regression identified 3 patient factors (age, BMI, and mammographic breast density), 1 cancer factor (number of pathological lymph nodes), and 1 treatment factor (axillary lymph node dissection) as independent prognostic variables. In validation testing, Spearman correlation revealed a statistically significant moderate correlation (coefficient, 0.42; 95% CI, 0.26-0.56; P < .001) between measured volume and predicted volume of lymphedema. The AUC values were 0.72 (95% CI, 0.60-0.83) for predicting the occurrence of mild lymphedema and 0.83 (95% CI, 0.74-0.93) for severe lymphedema. Conclusions and Relevance: This prognostic study found that patients with low breast density appeared to be at a higher risk of developing severe lymphedema. The finding suggests that by combining breast density with established risk factors a multivariate linear regression model could be used to predict the development of lymphedema and provide volumetric estimates of lymphedema severity in patients with breast cancer.