Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 611(7935): 365-373, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323783

RESUMEN

Cells respond to physical stimuli, such as stiffness1, fluid shear stress2 and hydraulic pressure3,4. Extracellular fluid viscosity is a key physical cue that varies under physiological and pathological conditions, such as cancer5. However, its influence on cancer biology and the mechanism by which cells sense and respond to changes in viscosity are unknown. Here we demonstrate that elevated viscosity counterintuitively increases the motility of various cell types on two-dimensional surfaces and in confinement, and increases cell dissemination from three-dimensional tumour spheroids. Increased mechanical loading imposed by elevated viscosity induces an actin-related protein 2/3 (ARP2/3)-complex-dependent dense actin network, which enhances Na+/H+ exchanger 1 (NHE1) polarization through its actin-binding partner ezrin. NHE1 promotes cell swelling and increased membrane tension, which, in turn, activates transient receptor potential cation vanilloid 4 (TRPV4) and mediates calcium influx, leading to increased RHOA-dependent cell contractility. The coordinated action of actin remodelling/dynamics, NHE1-mediated swelling and RHOA-based contractility facilitates enhanced motility at elevated viscosities. Breast cancer cells pre-exposed to elevated viscosity acquire TRPV4-dependent mechanical memory through transcriptional control of the Hippo pathway, leading to increased migration in zebrafish, extravasation in chick embryos and lung colonization in mice. Cumulatively, extracellular viscosity is a physical cue that regulates both short- and long-term cellular processes with pathophysiological relevance to cancer biology.


Asunto(s)
Movimiento Celular , Líquido Extracelular , Metástasis de la Neoplasia , Neoplasias , Viscosidad , Animales , Embrión de Pollo , Ratones , Actinas/metabolismo , Líquido Extracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Canales Catiónicos TRPV , Pez Cebra/metabolismo , Metástasis de la Neoplasia/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Vía de Señalización Hippo , Esferoides Celulares/patología , Complejo 2-3 Proteico Relacionado con la Actina , Proteína de Unión al GTP rhoA , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Pulmón/patología
2.
Nature ; 582(7813): 534-538, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555454

RESUMEN

Many corals harbour symbiotic dinoflagellate algae. The algae live inside coral cells in a specialized membrane compartment known as the symbiosome, which shares the photosynthetically fixed carbon with coral host cells while host cells provide inorganic carbon to the algae for photosynthesis1. This endosymbiosis-which is critical for the maintenance of coral reef ecosystems-is increasingly threatened by environmental stressors that lead to coral bleaching (that is, the disruption of endosymbiosis), which in turn leads to coral death and the degradation of marine ecosystems2. The molecular pathways that orchestrate the recognition, uptake and maintenance of algae in coral cells remain poorly understood. Here we report the chromosome-level genome assembly of a Xenia species of fast-growing soft coral3, and use this species as a model to investigate coral-alga endosymbiosis. Single-cell RNA sequencing identified 16 cell clusters, including gastrodermal cells and cnidocytes, in Xenia sp. We identified the endosymbiotic cell type, which expresses a distinct set of genes that are implicated in the recognition, phagocytosis and/or endocytosis, and maintenance of algae, as well as in the immune modulation of host coral cells. By coupling Xenia sp. regeneration and single-cell RNA sequencing, we observed a dynamic lineage progression of the endosymbiotic cells. The conserved genes associated with endosymbiosis that are reported here may help to reveal common principles by which different corals take up or lose their endosymbionts.


Asunto(s)
Antozoos/citología , Antozoos/genética , Linaje de la Célula/genética , Dinoflagelados/metabolismo , Simbiosis/genética , Animales , Antozoos/inmunología , Antozoos/metabolismo , Carbono/metabolismo , Diferenciación Celular/genética , Arrecifes de Coral , Dinoflagelados/inmunología , Dinoflagelados/fisiología , Ecosistema , Endocitosis , Genoma/genética , Fagocitosis , Fotosíntesis , RNA-Seq , Análisis de la Célula Individual , Simbiosis/inmunología , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217614

RESUMEN

Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox (Hox) gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 Hox genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of Hox mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements. We show that the conserved uORFs inhibit Hox reporter expression and that altering the stringency of start codon selection by overexpressing eIF1 or eIF5 modulates the expression of Hox reporters. We also show that modifying ribosome homeostasis by depleting a large ribosomal subunit protein or treating cells with sublethal concentrations of puromycin leads to lower stringency of start codon selection. Thus, altering global translation can confer gene-specific effects through altered start codon selection stringency.


Asunto(s)
Codón Iniciador , Evolución Molecular , Genes Homeobox , Biosíntesis de Proteínas , ARN Mensajero/genética , Animales , Ratones , Sistemas de Lectura Abierta
4.
Stem Cells ; 40(2): 133-148, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35257186

RESUMEN

The N-terminal caveolin-binding motif (CBM) in Na/K-ATPase (NKA) α1 subunit is essential for cell signaling and somitogenesis in animals. To further investigate the molecular mechanism, we have generated CBM mutant human-induced pluripotent stem cells (iPSCs) through CRISPR/Cas9 genome editing and examined their ability to differentiate into skeletal muscle (Skm) cells. Compared with the parental wild-type human iPSCs, the CBM mutant cells lost their ability of Skm differentiation, which was evidenced by the absence of spontaneous cell contraction, marker gene expression, and subcellular myofiber banding structures in the final differentiated induced Skm cells. Another NKA functional mutant, A420P, which lacks NKA/Src signaling function, did not produce a similar defect. Indeed, A420P mutant iPSCs retained intact pluripotency and ability of Skm differentiation. Mechanistically, the myogenic transcription factor MYOD was greatly suppressed by the CBM mutation. Overexpression of a mouse Myod cDNA through lentiviral delivery restored the CBM mutant cells' ability to differentiate into Skm. Upstream of MYOD, Wnt signaling was demonstrated from the TOPFlash assay to have a similar inhibition. This effect on Wnt activity was further confirmed functionally by defective induction of the presomitic mesoderm marker genes BRACHYURY (T) and MESOGENIN1 (MSGN1) by Wnt3a ligand or the GSK3 inhibitor/Wnt pathway activator CHIR. Further investigation through immunofluorescence imaging and cell fractionation revealed a shifted membrane localization of ß-catenin in CBM mutant iPSCs, revealing a novel molecular component of NKA-Wnt regulation. This study sheds light on a genetic regulation of myogenesis through the CBM of NKA and control of Wnt/ß-catenin signaling.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , beta Catenina , Animales , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/farmacología , Diferenciación Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/farmacología , Ratones , Desarrollo de Músculos/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
5.
FASEB J ; 36(7): e22385, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35734962

RESUMEN

Skeletal muscles can regenerate over the lifetime from resident muscle stem cells (MuSCs). Interactions between MuSCs and extracellular matrix (ECM) proteins are essential for muscle regeneration. The best-known receptors for ECM proteins are integrins, a family composed of twenty-some heterodimeric combinations of an α- and a ß-subunit. ß1-integrin (encoded by Itgb1) is required for quiescence, proliferation, migration, and fusion of Pax7+ MuSCs in the mouse model. ß3-integrin (encoded by Itgb3) has been reported to be critical for the myogenic differentiation of C2C12 myoblasts, and Itgb3 germline mutant mice were shown to regenerate few if any myofibers after injury. To investigate the autonomous role of Itgb3 in the myogenic lineage in vivo, we conditionally inactivated a floxed Itgb3 allele (Itgb3F ) by constitutive Pax7-Cre and tamoxifen-inducible Pax7-CreERT2 drivers. Unexpectedly, we found no defects in muscle regeneration in both conditional knockout models. In vitro studies using Itgb3 mutant myoblasts or RNAi knockdown of Itgb3 in myoblasts also did not reveal a role for myogenic differentiation. As ß1- and ß3-integrins share ECM ligands and downstream signaling effectors, we further examined Itgb3's role in a Itgb1 haploid background. Still, we found no evidence for an autonomous role of Itgb3 in muscle regeneration in vivo. Thus, while Itgb3 is critical for the differentiation of C2C12 cells, the regenerative defects reported for the Itgb3 germline mutant are not due to its role in the MuSC. We conclude that if ß3-integrin does have a role in Pax7+ MuSCs, it is compensated by ß1- and/or another ß-integrin(s).


Asunto(s)
Desarrollo de Músculos , Mioblastos , Animales , Diferenciación Celular , Ratones , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Transducción de Señal
6.
Development ; 142(7): 1254-66, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25804736

RESUMEN

Development of the metanephric kidney depends on tightly regulated interplay between self-renewal and differentiation of a nephron progenitor cell (NPC) pool. Several key factors required for the survival of NPCs have been identified, including fibroblast growth factor (FGF) signaling and the transcription factor Wilms' tumor suppressor 1 (WT1). Here, we present evidence that WT1 modulates FGF signaling by activating the expression of growth arrest-specific 1 (Gas1), a novel WT1 target gene and novel modulator of FGF signaling. We show that WT1 directly binds to a conserved DNA binding motif within the Gas1 promoter and activates Gas1 mRNA transcription in NPCs. We confirm that WT1 is required for Gas1 expression in kidneys in vivo. Loss of function of GAS1 in vivo results in hypoplastic kidneys with reduced nephron mass due to premature depletion of NPCs. Although kidney development in Gas1 knockout mice progresses normally until E15.5, NPCs show decreased rates of proliferation at this stage and are depleted as of E17.5. Lastly, we show that Gas1 is selectively required for FGF-stimulated AKT signaling in vitro. In summary, our data suggest a model in which WT1 modulates receptor tyrosine kinase signaling in NPCs by directing the expression of Gas1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Nefronas/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas WT1/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proliferación Celular , ADN/genética , Activación Enzimática/efectos de los fármacos , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones Noqueados , Modelos Animales , Nefronas/anomalías , Nefronas/embriología , Nefronas/patología , Técnicas de Cultivo de Órganos , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(1): E73-80, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25535338

RESUMEN

The myenteric plexus of the enteric nervous system controls the movement of smooth muscles in the gastrointestinal system. They extend their axons between two peripheral smooth muscle layers to form a tubular meshwork arborizing the gut wall. How a tubular axonal meshwork becomes established without invading centrally toward the gut epithelium has not been addressed. We provide evidence here that sonic hedgehog (Shh) secreted from the gut epithelium prevents central projections of enteric axons, thereby forcing their peripheral tubular distribution. Exclusion of enteric central projections by Shh requires its binding partner growth arrest specific gene 1 (Gas1) and its signaling component smoothened (Smo) in enteric neurons. Using enteric neurons differentiated from neurospheres in vitro, we show that enteric axon growth is not inhibited by Shh. Rather, when Shh is presented as a point source, enteric axons turn away from it in a Gas1-dependent manner. Of the Gαi proteins that can couple with Smo, G protein α Z (Gnaz) is found in enteric axons. Knockdown and dominant negative inhibition of Gnaz dampen the axon-repulsive response to Shh, and Gnaz mutant intestines contain centrally projected enteric axons. Together, our data uncover a previously unsuspected mechanism underlying development of centrifugal tubular organization and identify a previously unidentified effector of Shh in axon guidance.


Asunto(s)
Axones/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sistema Nervioso Entérico/metabolismo , Proteínas Hedgehog/metabolismo , Animales , Proteínas Ligadas a GPI/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Intestinos/citología , Ratones , Mutación/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened
8.
Development ; 140(14): 2972-84, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23760954

RESUMEN

Striated muscles that enable mouth opening and swallowing during feeding are essential for efficient energy acquisition, and are likely to have played a fundamental role in the success of early jawed vertebrates. The developmental origins and genetic requirements of these muscles are uncertain. Here, we determine by indelible lineage tracing in mouse that fibres of sternohyoid muscle (SHM), which is essential for mouth opening during feeding, and oesophageal striated muscle (OSM), which is crucial for voluntary swallowing, arise from Pax3-expressing somite cells. In vivo Kaede lineage tracing in zebrafish reveals the migratory route of cells from the anteriormost somites to OSM and SHM destinations. Expression of pax3b, a zebrafish duplicate of Pax3, is restricted to the hypaxial region of anterior somites that generate migratory muscle precursors (MMPs), suggesting that Pax3b plays a role in generating OSM and SHM. Indeed, loss of pax3b function led to defective MMP migration and OSM formation, disorganised SHM differentiation, and inefficient ingestion and swallowing of microspheres. Together, our data demonstrate Pax3-expressing somite cells as a source of OSM and SHM fibres, and highlight a conserved role of Pax3 genes in the genesis of these feeding muscles of vertebrates.


Asunto(s)
Esófago/embriología , Maxilares/embriología , Desarrollo de Músculos , Músculo Estriado/embriología , Factores de Transcripción Paired Box/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Movimiento Celular , Deglución , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Esófago/citología , Feto/citología , Feto/metabolismo , Maxilares/citología , Ratones , Músculo Estriado/citología , Músculo Estriado/metabolismo , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Somitos/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
9.
Biol Reprod ; 94(2): 44, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26740594

RESUMEN

Ovulation and luteinization are initiated in preovulatory follicles by the luteinizing hormone (LH) surge; however, the signaling events that mediate LH actions in these follicles remain incompletely defined. Two key transcription factors that are targets of LH surge are C/EBPalpha and C/EBPbeta, and their depletion in granulosa cells results in complete infertility. Microarray analyses of these mutant mice revealed altered expression of a number of genes, including growth arrest specific-1 (Gas1). To investigate functions of Gas1 in ovulation- and luteinization-related processes, we crossed Cyp19a1-Cre and Gas1(flox/flox) mice to conditionally delete Gas1 in granulosa and cumulus cells. While expression of Gas1 is dramatically increased in granulosa and cumulus cells around 12-16 h post-human chorionic gonadotropin (hCG) stimulation in wild-type mice, this increase is abolished in Cebpa/b double mutant and in Gas1 mutant mice. GAS1 is also dynamically expressed in stromal cells of the ovary independent of C/EBPalpha/beta. Female Gas1 mutant mice are fertile, exhibit enhanced rates of ovulation, increased fertility, and higher levels of Areg and Lhcgr mRNA in granulosa cells. The morphological appearance and vascularization of corpora lutea appeared normal in these mutant females. Interestingly, levels of mRNA for a number of genes (Cyp11a1, Star, Wnt4, Prlr, Cd52, and Sema3a) associated with luteinization are decreased in corpora lutea of Gas1 mutant mice as compared with controls at 24 h post-hCG; these differences were no longer detectable by 48 h post-hCG. The C/EBP target Gas1 is induced in granulosa cells and is associated with ovulation and luteinization.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas de Ciclo Celular/genética , Cuerpo Lúteo/metabolismo , Ovulación/genética , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células del Cúmulo/metabolismo , Femenino , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Células de la Granulosa/metabolismo , Luteinización/genética , Luteinización/metabolismo , Ratones , Ratones Noqueados , Ovulación/metabolismo
10.
EMBO Rep ; 15(11): 1175-83, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25205686

RESUMEN

During muscle regeneration, the transcription factor Pax7 stimulates the differentiation of satellite cells (SCs) toward the muscle lineage but restricts adipogenesis. Here, we identify HDAC4 as a regulator of Pax7-dependent muscle regeneration. In HDAC4-deficient SCs, the expression of Pax7 and its target genes is reduced. We identify HDAC4-regulated Lix1 as a Pax7 target gene required for SC proliferation. HDAC4 inactivation leads to defective SC proliferation, muscle regeneration, and aberrant lipid accumulation. Further, expression of the brown adipose master regulator Prdm16 and its inhibitory microRNA-133 are also deregulated. Thus, HDAC4 is a novel regulator of Pax7-dependent SC proliferation and potentially fate determination in regenerating muscle.


Asunto(s)
Histona Desacetilasas/metabolismo , Músculo Esquelético/fisiología , Factor de Transcripción PAX7/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasas/genética , Metabolismo de los Lípidos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Factor de Transcripción PAX7/genética , Proteínas/genética , Proteínas/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(22): E2019-27, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23671110

RESUMEN

The segmented body plan of vertebrates is prefigured by reiterated embryonic mesodermal structures called somites. In the mouse embryo, timely somite formation from the presomitic mesoderm (PSM) is controlled by the "segmentation clock," a molecular oscillator that triggers progressive waves of Notch activity throughout the PSM. Notch clock activity is suppressed in the posterior PSM by FGF signaling until it crosses a determination front at which its net activity is sufficiently high to effect segmentation. Here, Notch and Wnt signaling directs somite anterior/posterior (A/P) polarity specification and boundary formation via regulation of the segmentation effector gene Mesoderm posterior 2. How Notch and Wnt signaling becomes coordinated at this front is incompletely defined. Here we show that the activity of the cAMP responsive element binding protein (CREB) family of transcription factors exhibits Wnt3a-dependent oscillatory behavior near the determination front and is in unison with Notch activity. Inhibition of CREB family in the mesoderm causes defects in somite segmentation and a loss in somite posterior polarity leading to fusions of vertebrae and ribs. Among the CREB family downstream genes, several are known to be regulated by Wnt3a. Of those, we show that the CREB family occupies a conserved binding site in the promoter region of Delta-like 1, encoding a Notch ligand, in the anterior PSM as a mechanism to specify posterior identity of somites. Together, these data support that the CREB family acts at the determination front to modulate Wnt signaling and strengthen Notch signaling as a means to orchestrate cells for somite segmentation and anterior/posterior patterning.


Asunto(s)
Tipificación del Cuerpo/fisiología , Polaridad Celular/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Mesodermo/embriología , Receptores Notch/metabolismo , Somitos/embriología , Vía de Señalización Wnt/fisiología , Animales , Inmunoprecipitación de Cromatina , Cruzamientos Genéticos , Técnicas Histológicas , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices
12.
Nature ; 460(7255): 627-31, 2009 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-19554048

RESUMEN

Myogenic potential, survival and expansion of mammalian muscle progenitors depend on the myogenic determinants Pax3 and Pax7 embryonically, and Pax7 alone perinatally. Several in vitro studies support the critical role of Pax7 in these functions of adult muscle stem cells (satellite cells), but a formal demonstration has been lacking in vivo. Here we show, through the application of inducible Cre/loxP lineage tracing and conditional gene inactivation to the tibialis anterior muscle regeneration paradigm, that, unexpectedly, when Pax7 is inactivated in adult mice, mutant satellite cells are not compromised in muscle regeneration, they can proliferate and reoccupy the sublaminal satellite niche, and they are able to support further regenerative processes. Dual adult inactivation of Pax3 and Pax7 also results in normal muscle regeneration. Multiple time points of gene inactivation reveal that Pax7 is only required up to the juvenile period when progenitor cells make the transition into quiescence. Furthermore, we demonstrate a cell-intrinsic difference between neonatal progenitor and adult satellite cells in their Pax7-dependency. Our finding of an age-dependent change in the genetic requirement for muscle stem cells cautions against inferring adult stem-cell biology from embryonic studies, and has direct implications for the use of stem cells from hosts of different ages in transplantation-based therapy.


Asunto(s)
Regeneración/fisiología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/fisiología , Células Madre/citología , Células Madre/fisiología , Envejecimiento , Animales , Proliferación Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Ratones , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Mutación , Factor de Transcripción PAX3 , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/metabolismo , Regeneración/genética , Células Satélite del Músculo Esquelético/efectos de los fármacos , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Células Madre/efectos de los fármacos , Tamoxifeno/farmacología , Factores de Tiempo
13.
Proc Natl Acad Sci U S A ; 109(35): E2353-60, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22869749

RESUMEN

Myostatin and activin A are structurally related secreted proteins that act to limit skeletal muscle growth. The cellular targets for myostatin and activin A in muscle and the role of satellite cells in mediating muscle hypertrophy induced by inhibition of this signaling pathway have not been fully elucidated. Here we show that myostatin/activin A inhibition can cause muscle hypertrophy in mice lacking either syndecan4 or Pax7, both of which are important for satellite cell function and development. Moreover, we show that muscle hypertrophy after pharmacological blockade of this pathway occurs without significant satellite cell proliferation and fusion to myofibers and without an increase in the number of myonuclei per myofiber. Finally, we show that genetic ablation of Acvr2b, which encodes a high-affinity receptor for myostatin and activin A specifically in myofibers is sufficient to induce muscle hypertrophy. All of these findings are consistent with satellite cells playing little or no role in myostatin/activin A signaling in vivo and render support that inhibition of this signaling pathway can be an effective therapeutic approach for increasing muscle growth even in disease settings characterized by satellite cell dysfunction.


Asunto(s)
Activinas/metabolismo , Fibras Musculares Esqueléticas/citología , Miostatina/metabolismo , Células Satélite del Músculo Esquelético/citología , Transducción de Señal/fisiología , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Folistatina/genética , Folistatina/metabolismo , Hipertrofia , Fusión de Membrana/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Tamaño de los Órganos , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Regeneración/fisiología , Células Satélite del Músculo Esquelético/metabolismo , Sindecano-4/genética , Sindecano-4/metabolismo
14.
Genesis ; 52(8): 759-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24844572

RESUMEN

We report the generation of five mouse strains with the tamoxifen-inducible Cre (Cre-ER(T) (2) ; CE) gene cassette knocked into the endogenous loci of Pax3, Myod1, Myog, Myf6, and Myl1, collectively as a resource for the skeletal muscle research community. We characterized these CE strains using the Cre reporter mice, R26R(L) (acZ) , during embryogenesis and show that they direct tightly controlled tamoxifen-inducible reporter expression within the expected cell lineage determined by each myogenic gene. We also examined a few selected adult skeletal muscle groups for tamoxifen-inducible reporter expression. None of these new CE alleles direct reporter expression in the cardiac muscle. All these alleles follow the same knock-in strategy by replacing the first exon of each gene with the CE cassette, rendering them null alleles of the endogenous gene. Advantages and disadvantages of this design are discussed. Although we describe potential immediate use of these strains, their utility likely extends beyond foreseeable questions in skeletal muscle biology.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Músculo Esquelético/citología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Alelos , Animales , Linaje de la Célula , Técnicas de Sustitución del Gen , Ratones , Músculo Esquelético/crecimiento & desarrollo
15.
Development ; 138(17): 3639-46, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21828092

RESUMEN

Skeletal muscle tissue provides mechanical force for locomotion of all vertebrate animals. It is prone to damage from acute physical trauma and physiological stress. To cope with this, it possesses a tremendous capacity for rapid and effective repair that is widely held to be accomplished by the satellite cells lying between the muscle fiber plasmalemma and the basement membrane. Cell transplantation and lineage-tracing studies have demonstrated that Pax7-expressing (Pax7(+)) satellite cells can repair damaged muscle tissue repeatedly after several bouts of acute injury. These findings provided evidence that Pax7(+) cells are muscle stem cells. However, stem cells from a variety of other origins are also reported to contribute to myofibers upon engraftment into muscles, questioning whether satellite cells are the only stem cell source for muscle regeneration. Here, we have engineered genetic ablation of Pax7(+) cells to test whether there is any significant contribution to muscle regeneration after acute injury from cells other than this source. We find that such elimination of Pax7(+) cells completely blocks regenerative myogenesis either following injury to the tibialis anterior (TA) muscle or after transplantation of extensor digitorum longus (EDL) muscles into nude mice. As Pax7 is specifically expressed in satellite cells, we conclude that they are essential for acute injury-induced muscle regeneration. It remains to be established whether there is any significant role for stem cells of other origins. The implications of our results for muscle stem cell-based therapy are discussed.


Asunto(s)
Músculo Esquelético/citología , Músculo Esquelético/fisiología , Factor de Transcripción PAX7/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Animales , Bungarotoxinas/farmacología , Cardiotoxinas/farmacología , Proliferación Celular/efectos de los fármacos , Toxina Diftérica/farmacología , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Mutantes , Ratones Desnudos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Factor de Transcripción PAX7/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Satélite del Músculo Esquelético/fisiología , Tamoxifeno/farmacología
16.
BMC Biol ; 11: 27, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23537390

RESUMEN

BACKGROUND: The pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke's pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke's pouch. Little is currently known about the formation and function of this structure. Here we have investigated molecular mechanisms driving the formation of the buccohypophyseal canal and their evolutionary significance. RESULTS: We show that Rathke's pouch is located at a boundary region delineated by endoderm, neural crest-derived oral mesenchyme and the anterior limit of the notochord, using CD1, R26R-Sox17-Cre and R26R-Wnt1-Cre mouse lines. As revealed by synchrotron X-ray microtomography after iodine staining in mouse embryos, the pouch has a lobulated three-dimensional structure that embraces the descending diencephalon during pituitary formation. Polaris(fl/fl); Wnt1-Cre, Ofd1(-/-) and Kif3a(-/-) primary cilia mouse mutants have abnormal sonic hedgehog (Shh) signaling and all present with malformations of the anterior pituitary gland and midline structures of the anterior cranial base. Changes in the expressions of Shh downstream genes are confirmed in Gas1(-/-) mice. From an evolutionary perspective, persistence of the buccohypophyseal canal is a basal character for all vertebrates and its maintenance in several groups is related to a specific morphology of the midline that can be related to modulation in Shh signaling. CONCLUSION: These results provide insight into a poorly understood ancestral vertebrate structure. It appears that the opening of the buccohypophyseal canal depends upon Shh signaling and that modulation in this pathway most probably accounts for its persistence in phylogeny.


Asunto(s)
Proteínas Hedgehog/metabolismo , Boca/embriología , Boca/metabolismo , Hipófisis/embriología , Hipófisis/metabolismo , Transducción de Señal , Vertebrados/embriología , Animales , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Cilios/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Extinción Biológica , Peces/embriología , Fósiles , Proteínas Ligadas a GPI/deficiencia , Proteínas Ligadas a GPI/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Maxilares/embriología , Ratones , Boca/anatomía & histología , Mutación/genética , Filogenia , Hipófisis/anatomía & histología , Cráneo/anatomía & histología , Cráneo/embriología
17.
Cell Death Dis ; 15(6): 420, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886383

RESUMEN

The regeneration of the mammalian skeleton's craniofacial bones necessitates the action of intrinsic and extrinsic inductive factors from multiple cell types, which function hierarchically and temporally to control the differentiation of osteogenic progenitors. Single-cell transcriptomics of developing mouse calvarial suture recently identified a suture mesenchymal progenitor population with previously unappreciated tendon- or ligament-associated gene expression profile. Here, we developed a Mohawk homeobox (MkxCG; R26RtdT) reporter mouse and demonstrated that this reporter identifies an adult calvarial suture resident cell population that gives rise to calvarial osteoblasts and osteocytes during homeostatic conditions. Single-cell RNA sequencing (scRNA-Seq) data reveal that Mkx+ suture cells display a progenitor-like phenotype with expression of teno-ligamentous genes. Bone injury with Mkx+ cell ablation showed delayed bone healing. Remarkably, Mkx gene played a critical role as an osteo-inhibitory factor in calvarial suture cells, as knockdown or knockout resulted in increased osteogenic differentiation. Localized deletion of Mkx in vivo also resulted in robustly increased calvarial defect repair. We further showed that mechanical stretch dynamically regulates Mkx expression, in turn regulating calvarial cell osteogenesis. Together, we define Mkx+ cells within the suture mesenchyme as a progenitor population for adult craniofacial bone repair, and Mkx acts as a mechanoresponsive gene to prevent osteogenic differentiation within the stem cell niche.


Asunto(s)
Diferenciación Celular , Proteínas de Homeodominio , Osteogénesis , Cráneo , Animales , Ratones , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Osteogénesis/genética , Cráneo/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citología , Suturas Craneales/metabolismo , Células Madre/metabolismo , Células Madre/citología , Biomarcadores/metabolismo
18.
Res Sq ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38077061

RESUMEN

Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renewal, for the regenerative process to last a lifetime. How stem cells renew is of critical biological and medical significance. Here we use the skeletal muscle stem cell (MuSC) to study this process. Using a combination of genetic, molecular, and biochemical approaches, we show that MPP7, AMOT, and TAZ/YAP form a complex that activates a common set of target genes. Among these targets, Carm1 can direct MuSC renewal. In the absence of MPP7, TAZ can support regenerative progenitors and activate Carm1 expression, but not to a level needed for self-renewal. Facilitated by the actin polymerization-responsive AMOT, TAZ recruits the L27 domain of MPP7 to up-regulate Carm1 to the level necessary to drive MuSC renewal. The promoter of Carm1, and those of other common downstream genes, also contain binding site(s) for YY1. We further demonstrate that the L27 domain of MPP7 enhances the interaction between TAZ and YY1 to activate Carm1. Our results define a renewal transcriptional program embedded within the progenitor program, by selectively up-regulating key gene(s) within the latter, through the combination of protein interactions and in a manner dependent on the promoter context.

19.
bioRxiv ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37961392

RESUMEN

Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renewal, for the regenerative process to last a lifetime. How stem cells renew is of critical biological and medical significance. Here we use the skeletal muscle stem cell (MuSC) to study this process. Using a combination of genetic, molecular, and biochemical approaches, we show that MPP7, AMOT, and TAZ/YAP form a complex that activates a common set of target genes. Among these targets, Carm1 can direct MuSC renewal. In the absence of MPP7, TAZ can support regenerative progenitors and activate Carm1 expression, but not to a level needed for self-renewal. Facilitated by the actin polymerization-responsive AMOT, TAZ recruits the L27 domain of MPP7 to up-regulate Carm1 to the level necessary to drive MuSC renewal. The promoter of Carm1, and those of other common downstream genes, also contain binding site(s) for YY1. We further demonstrate that the L27 domain of MPP7 enhances the interaction between TAZ and YY1 to activate Carm1. Our results define a renewal transcriptional program embedded within the progenitor program, by selectively up-regulating key gene(s) within the latter, through the combination of protein interactions and in a manner dependent on the promoter context.

20.
bioRxiv ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38168349

RESUMEN

Skeletal muscles connect bones and tendons for locomotion and posture. Understanding the regenerative processes of muscle, bone and tendon is of importance to basic research and clinical applications. Despite their interconnections, distinct transcription factors have been reported to orchestrate each tissue's developmental and regenerative processes. Here we show that Scx expression is not detectable in adult muscle stem cells (also known as satellite cells, SCs) during quiescence. Scx expression begins in activated SCs and continues throughout regenerative myogenesis after injury. By SC-specific Scx gene inactivation (ScxcKO), we show that Scx function is required for SC expansion/renewal and robust new myofiber formation after injury. We combined single-cell RNA-sequencing and CUT&RUN to identify direct Scx target genes during muscle regeneration. These target genes help explain the muscle regeneration defects of ScxcKO, and are not overlapping with Scx -target genes identified in tendon development. Together with a recent finding of a subpopulation of Scx -expressing connective tissue fibroblasts with myogenic potential during early embryogenesis, we propose that regenerative and developmental myogenesis co-opt the Scx gene via different mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA