Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1794(6): 944-52, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19328871

RESUMEN

Trigger Factor (TF) is a three-domain chaperone which catalyzes nascent peptide folding and harbors peptidyl-prolyl cis-trans isomerase activity. The multi-domain structure of TF makes it an interesting and challenging candidate for studies of the structural properties and functional behavior of individual domains or combined domain constructs. Here we constructed a TF mutant, NC, combining the N- and C-domains that are responsible for TF's chaperone function, and compared structural changes and unfolding characteristics of NC with wild-type TF by monitoring fluorescence spectra, far-UV CD, chemical crosslinking, DSC and binding with hydrophobic probes (ANS or bis-ANS). The results showed that the NC construct, like intact TF, could bind to hydrophobic probes, form dimers in solution, and showed a similar 3-state guanidine-induced unfolding profile. However, the NC fragment showed reduced stability towards both guanidine unfolding and thermal denaturation, suggesting that the presence of the M-domain of TF contributes to the stability of the intact TF structure.


Asunto(s)
Proteínas de Escherichia coli/química , Sondas Moleculares , Isomerasa de Peptidilprolil/química , Rastreo Diferencial de Calorimetría , Dimerización , Proteínas de Escherichia coli/genética , Mutación , Isomerasa de Peptidilprolil/genética , Conformación Proteica
2.
Biochim Biophys Acta ; 1784(11): 1728-34, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18539163

RESUMEN

Temperature-induced unfolding of Escherichia coli trigger factor (TF) and its domain truncation mutants, NM and MC, were studied by ultra-sensitive differential scanning calorimetry (UC-DSC). Detailed thermodynamic analysis showed that thermal induced unfolding of TF and MC involves population of dimeric intermediates. In contrast, the thermal unfolding of the NM mutant involves population of only monomeric states. Covalent cross-linking experiments confirmed the presence of dimeric intermediates during thermal unfolding of TF and MC. These data not only suggest that the dimeric form of TF is extremely resistant to thermal unfolding, but also provide further evidence that the C-terminal domain of TF plays a vital role in forming and stabilizing the dimeric structure of the TF molecule. Since TF is the first molecular chaperone that nascent polypeptides encounter in eubacteria, the stable dimeric intermediates of TF populated during thermal denaturation might be important in responding to stress damage to the cell, such as heat shock.


Asunto(s)
Proteínas de Escherichia coli/química , Isomerasa de Peptidilprolil/química , Pliegue de Proteína , Temperatura , Rastreo Diferencial de Calorimetría/métodos , Reactivos de Enlaces Cruzados/farmacología , Dimerización , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Respuesta al Choque Térmico/fisiología , Modelos Químicos , Proteínas Mutantes/análisis , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Sensibilidad y Especificidad , Termodinámica
3.
Protein Sci ; 16(6): 1165-75, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17525465

RESUMEN

Trigger factor (TF) is the first chaperone to interact with nascent chains and facilitate their folding in bacteria. Escherichia coli TF is 432 residues in length and contains three domains with distinct structural and functional properties. The N-terminal domain of TF is important for ribosome binding, and the M-domain carries the PPIase activity. However, the function of the C-terminal domain remains unclear, and the residues or regions directly involved in substrate binding have not yet been identified. Here, a hydrophobic probe, bis-ANS, was used to characterize potential substrate-binding regions. Results showed that bis-ANS binds TF with a 1:1 stoichiometry and a K(d) of 16 microM, and it can be covalently incorporated into TF by UV-light irradiation. A single bis-ANS-labeled peptide was obtained by tryptic digestion and identified by MALDI-TOF mass spectrometry as Asn391-Lys392. In silico docking analysis identified a single potential binding site for bis-ANS on the TF molecule, which is adjacent to this dipeptide and lies in the pocket formed by the C-terminal arms. The bis-ANS-labeled TF completely lost the ability to assist GAPDH or lysozyme refolding and showed increased protection toward cleavage by alpha-chymotrypsin, suggesting blocking of hydrophobic residues. The C-terminal truncation mutant TF389 also showed no chaperone activity and could not bind bis-ANS. These results suggest that bis-ANS binding may mimic binding of a substrate peptide and that the C-terminal region of TF plays an important role in hydrophobic binding and chaperone function.


Asunto(s)
Proteínas de Escherichia coli/química , Péptidos/química , Isomerasa de Peptidilprolil/química , Naftalenosulfonatos de Anilina/química , Sitios de Unión , Proteínas de Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Péptidos/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Unión Proteica/efectos de la radiación , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Rayos Ultravioleta
4.
Int J Biochem Cell Biol ; 42(6): 890-901, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20096367

RESUMEN

Trigger factor (TF) is the first chaperone encountered by nascent chains in bacteria, which consists of two modules: peptidyl-prolyl-cis/trans-isomerase (PPIase) domain and a crevice built by both N- and C-terminal domains. While the crevice is suggested to provide a protective space over the peptide exit site of ribosome for nascent polypeptides to fold, it remains unclear whether PPIase domain is directly involved in assisting protein folding. Here, we introduced structural change into different regions of TF, and investigated their influence on the chaperone function of TF in assisting the folding of various substrate proteins, including oligomeric glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and monomeric carbonic anhydrase II (CA II) and lysozyme. Results showed that structural disturbances by site-specific mutations in the PPIase active site or by deletion of the PPIase domain from TF affected the chaperone activity of TF toward CA II and GAPDH but had no effect on TF-assisted lysozyme refolding, suggesting PPIase domain is involved in assisting the folding of substrates larger than lysozyme. Mutants with the structural disturbances in the crevice totally lost the chaperone activity toward all the substrates we used in this investigation. These results provide further evidence to confirm that the crevice is the major chaperone site of TF, and the hydrophobic pocket in PPIase domain acts as an auxiliary site to assist the folding of substrate proteins bound to the crevice in a substrate-dependent manner, which is beneficial for TF to provide appropriate assistance for protein folding by changing protective space and binding affinity.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Chaperonas Moleculares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Secuencia de Aminoácidos , Animales , Anhidrasa Carbónica II/metabolismo , Dominio Catalítico/genética , Bovinos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Humanos , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Isomerasa de Peptidilprolil/genética , Ingeniería de Proteínas , Pliegue de Proteína , Conejos , Relación Estructura-Actividad , Porcinos
5.
World J Microbiol Biotechnol ; 26(7): 1323-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24026937

RESUMEN

A simple and general method for disrupting chromosomal genes and introducing insertions is described. This procedure involves eliminating wild-type bacterial genes and introducing mutant alleles or other insertions at the original locus of the wild-type gene. To demonstrate the utility of this approach, the tig gene of Escherichia coli was replaced by homologous recombination with a cassette containing the chloramphenicol resistance gene and the sacB gene. The cassette was then removed and the tig mutant alleles were moved into the native tig location. Sequencing and Western blotting results demonstrated that insertions or deletions can be introduced precisely in E. coli using our approach. Our system does not require extra in vitro manipulations such as restriction digestion or ligation, and does not require use of specific plasmids or strains which are used to prevent false positive transformants caused by template plasmid transformation. This technique can be used widely in bacterial genome analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA