Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Res ; 201: 107091, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316371

RESUMEN

Inhibition of checkpoint kinase 1 (Chk1) has shown to overcome resistance to poly (ADP-ribose) polymerase (PARP) inhibitors and expand the clinical utility of PARP inhibitors in a broad range of human cancers. Pristimerin, a naturally occurring pentacyclic triterpenoid, has been the focus of intensive studies for its anticancer potential. However, it is not yet known whether low dose of pristimerin can be combined with PARP inhibitors by targeting Chk1 signaling pathway. In this study, we investigated the efficacy, safety and molecular mechanisms of the synergistic effect produced by the combination olaparib and pristimerin in TP53-deficient and BRCA-proficient cell models. As a result, an increased expression of Chk1 was correlated with TP53 mutation, and pristimerin preferentially sensitized p53-defective cells to olaparib. The combination of olaparib and pristimerin resulted in a more pronounced abrogation of DNA synthesis and induction of DNA double-strand breaks (DSBs). Moreover, pristimerin disrupted the constitutional levels of Chk1 and DSB repair activities. Mechanistically, pristimerin promoted K48-linked polyubiquitination and proteasomal degradation of Chk1 while not affecting its kinase domain and activity. Importantly, combinatorial therapy led to a higher rate of tumor growth inhibition without apparent hematological toxicities. In addition, pristimerin suppressed olaparib-induced upregulation of Chk1 and enhanced olaparib-induced DSB marker γΗ2ΑΧ in vivo. Taken together, inhibition of Chk1 by pristimerin has been observed to induce DNA repair deficiency, which may expand the application of olaparib in BRCA-proficient cancers harboring TP53 mutations. Thus, pristimerin can be combined for PARP inhibitor-based therapy.


Asunto(s)
Antineoplásicos , Triterpenos , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Triterpenos/farmacología , Triterpenos/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Triterpenos Pentacíclicos , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ubiquitinación , ADN
2.
Clin Exp Pharmacol Physiol ; 50(1): 82-95, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36153795

RESUMEN

Angiotensin II (AngII)-mediated pathological angiogenesis is one of the important factors promoting the progression of atherosclerosis, tumour metastasis, and diabetic retinopathy. Here, we first demonstrate that salvianolic acid B (Sal B) attenuated AngII-induced angiogenesis by downregulating the IRE1/ASK1/JNK/p38MAPK signalling pathway and protected vascular endothelial cells from hypoxia-induced damage. These pharmacological consequences could be ascribed to the unique interactions between Sal B and the ATP-binding cavity of IREIα, leading to bi-directional roles of IRE1 kinase and endonuclease activity; this may possibly be one of the essential mechanisms of the bi-directional regulation of angiogenesis in different conditions. Moreover, our results indicated that IRE1 was a novel anti-angiogenesis target and type I IRE1 kinase inhibitor (e.g., Sal B, APY29) and might be a potentially eligible low-toxicity drug for treating AngII-mediated pathological angiogenesis.


Asunto(s)
Neovascularización Patológica , Inhibidores de Proteínas Quinasas , Angiotensina II/farmacología , Células Endoteliales/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Biosci Biotechnol Biochem ; 86(3): 305-312, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-34935885

RESUMEN

Cerebral ischemia reperfusion (CIR) has become the leading cause of death and disability. Baicalein is a natural bioactive ingredient extracted from Scutellaria baicalensis Georgi and has neuroprotective activity. In our work, baicalein was found to reduce neurological deficits, brain water content, infarct area, and neuronal death of rats induced by middle cerebral artery occlusion/reperfusion. In vitro, oxygen-glucose deprivation/reperfusion induced inordinate ROS production and apoptosis that could be reversed by baicalein. Our study revealed for the first time that baicalein has the potential to bind and inhibit the activity of calpain 1, thereby inhibiting AIF nuclear translocation. These findings demonstrated that baicalein protected against CIR injury via inhibiting AIF nuclear translocation by inhibiting calpain 1 activity.


Asunto(s)
Flavanonas
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(10): 1045-1053, 2021 Oct 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-34911833

RESUMEN

OBJECTIVES: Lung cancer is one of the most common malignant tumors in the world, and its lethality ranks the first among many malignant tumors. For non-small cell lung cancer (NSCLC) patients, due to the high mortality rate, the overall 5-year survival rate is less than 15%. When NSCLC undergoes local invasion, the 5-year survival rate is only 20%, and it is even lower when distant metastasis occurs up to 4%. Almonertinib is an innovative drug independently researched and developed by China with independent intellectual property rights. As an epidermal growth factor receptor tyrosine kinase inhibitor, almonertinib is mainly used for locally advanced or metastatic NSCLC patients with epidermal growth factor receptor (EGFR) T790M mutation. This study aims to investigate the effects of almonertinib on the proliferation, invasion and migration of NSCLC cells in vitro. METHODS: NSCLC cells H1975 and PC-9 were cultured in vitro. The effects of almonertinib on the proliferation, apoptosis, invasion, and migration of H1975 and PC-9 cells were detected by CCK-8 assay, apoptotic assay and Transwell assay. The expression of invasion and migration related proteins was detected by Western blotting. RESULTS: The CCK-8 experiment showed that almonertinib inhibited the proliferation of H1975 and PC-9 cells in a time- and dose-dependent manner. The IC50 values in PC-9 cells at 24 and 48 h were 5.422 and 1.302 µmol/L, respectively. The IC50 values in H1975 cells at 24 and 48 h were 4.803 and 2.094 µmol/L, respectively. Almonertinib (1, 2, 4, 8 µmol/L)-treated PC-9 and H1975 cells for 24 h resulted in apoptosis rate at (8.82±3.22)%, (9.53±4.24)%, (13.62±3.69)%, (42.10±1.76)% and (9.81±0.90)%, (10.51±1.49)%, (15.34±3.50)%, (28.97±2.57)%, respectively. The transwell experiment showed that almonertinib inhibited the invasion and migration of H1975 and PC-9 cells. Western blotting showed that compared with the control group, the expression levels of MMP-9, MMP-2 and vimentin protein in PC-9 and H1975 cells in 1, 2 and 4 µmol/L almonertinib treatment group were significantly lower, and the expression level of E-cadherin protein was significantly higher (all P<0.05). The experimental results of nude mice showed that compared with the control group and the positive control ositinib (AZD9291) group, the tumor growth was significantly inhibited, the weight of nude mice, the tumor volume and the tumor mass were significantly reduced in the almonertinib treatment group (all P<0.05). CONCLUSIONS: Almonertinib can inhibit the proliferation, invasion, and migration of NSCLCH1975 and PC-9 cells in vitro and vivo, and promote the apoptosis of H1975 and PC-9 cells. The underlying mechanism may be related to the inhibition of tumor cell epithelial mesenchymal transformation and metalloproteinase expression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Acrilamidas , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Receptores ErbB/genética , Humanos , Indoles , Ratones , Ratones Desnudos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas
5.
Clin Exp Pharmacol Physiol ; 45(12): 1265-1273, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30044005

RESUMEN

Endothelial cells (ECs) mainly depend on aerobic glycolysis to generate angiogenesis. Deregulation of glycolysis is often observed in human endothelial cells during angiogenesis. In the present study, we first report that resveratrol (RST), which has been intensively studied in glucose metabolism of various cancer cells, has a profound inhibitory effect on tube formation and migration via suppression of glycolysis in human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor (VEGF). Moreover, we further reveal that RST reduced the mRNA and protein level of glucose transporter-1(GLUT1), hexokinase II (HK2), phosphofructokinase-1(PFK1) and pyruvate kinase M2 (PKM2) through modulation of ERK-mediated PKM2 nuclear translocation. Our results provide a novel mechanism to account for the inhibition of RST on VEGF-mediated angiogenesis and suggest that targeting aerobic glycolysis or nuclear PKM2 may be a new approach for pathological angiogenesis prevention or treatment.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Resveratrol/farmacología , Hormonas Tiroideas/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Aerobiosis/efectos de los fármacos , Núcleo Celular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Proteínas de Unión a Hormona Tiroide
6.
J Surg Res ; 217: 113-122, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28629815

RESUMEN

BACKGROUND: To explore the impact of Resveratrol (RSV) on the angiogenic potential of activated platelets and to elucidate the underlying mechanism. METHODS: Vascular endothelial growth factor concentrations were measured by enzyme-linked immunosorbent assay. Capillary tube formation assay was used to examine the impact of RSV on the angiogenic potential of activated platelets. The levels of cyclic adenosine monophosphate and cyclic guanosine monophosphate (cGMP) in the supernatant were evaluated using corresponding enzyme-linked immunosorbent assay kits. Immunoblotting assays were used to determine the expression of vasodilator-stimulated phosphoprotein and Akt phosphorylation. A pulmonary metastasis experiment with male nude mice model was performed to test the effect of RSV on pulmonary metastasis and angiogenesis in vivo. RESULTS: RSV inhibited platelets-mediated angiogenic responses induced by adenosine diphosphate (ADP)ADP through increased cGMP generation and cGMP-mediated vasodilator-stimulated phosphoprotein phosphorylation along with reduced intracellular Ca2+ mobilization. In addition, RSV attenuated the platelet secretion and angiogenic responses induced by A549 cells in vitro and suppressed A549 lung cancer metastasis and angiogenesis in nude mice. CONCLUSIONS: RSV is a potential therapeutic drug for the prevention of tumor metastasis by interrupting the platelet-tumor cell amplification loop.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Plaquetas/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Estilbenos/uso terapéutico , Células A549 , Adenosina Difosfato , Animales , Antineoplásicos Fitogénicos/farmacología , Plaquetas/metabolismo , Calcio/metabolismo , Moléculas de Adhesión Celular/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones Desnudos , Proteínas de Microfilamentos/metabolismo , Metástasis de la Neoplasia , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol , Estilbenos/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Mol Carcinog ; 55(10): 1399-410, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26310813

RESUMEN

Cryptotanshinone (CT), one major lipophilic component isolated from Salvia miltiorrhiza Bunge, has shown to possess chemopreventive properties against various types of cancer cells. In this study, CT was shown to be a potent anti-angiogenic agent in zebrafish, and mouse models and could limit tumor growth by inhibiting tumor angiogenesis. We further found that CT could inhibit the proliferation, migration, angiogenic sprouting, and tube formation of HUVECs. In addition, we demonstrated that CT could lower the level of TNF-α due to the destabilization of TNF-α mRNA, which associated with regulating 3'-untranslated region (3'-UTR) of TNF-α and preventing the translocation of RNA binding protein, HuR, from the nucleus to the cytoplasm. Moreover, the underlying mechanism responsible for the regulation in angiogenesis by CT was partially related to the suppression of NF-κB, and STAT3 activity. Based on the abilities of CT in targeting tumor cells, inhibiting angiogenesis, and destroying tumor vasculature, CT is worthy of further investigation for preventive, and therapeutic purposes in cancer. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Proteína 1 Similar a ELAV/metabolismo , Neoplasias/tratamiento farmacológico , Fenantrenos/administración & dosificación , Factor de Necrosis Tumoral alfa/genética , Inhibidores de la Angiogénesis/farmacología , Animales , Línea Celular Tumoral , Movimiento Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Fenantrenos/farmacología , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
8.
Pharm Biol ; 54(12): 3237-3243, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27572285

RESUMEN

CONTEXT: Activation of hepatic stellate cells (HSCs) is a hallmark of liver fibrosis. Quercetin has benefits for liver fibrosis, but the mechanisms are unknown. OBJECTIVE: We investigated the quercetin effect on HSC survival and the role of endoplasmic reticulum stress (ERS). MATERIALS AND METHODS: Rat HSCs and LO2 hepatocytes were treated with quercetin (0.5-120 µM) for 24 h. Quercetin (10-40 µM) effects on apoptosis for 24 h were analyzed by flow cytometry and TUNEL staining. Quercetin (10-40 µM) effects on the expression of Bcl-2, caspase-9, caspase-3, PARP-1, PERK, IRE1, ATF6, calnexin and CHOP for 24 h were analyzed by Western blot. Quercetin (10-40 µM) effects on mRNA expression of calnexin and CHOP for 24 h were analyzed by Real-time PCR. RESULTS: Quercetin at concentrations greater than 20 µM significantly inhibited HSC proliferation (IC50 27.2 µM), but did not affect hepatocyte growth until 80 µM (IC50 68.5 µM). Quercetin stimulated HSC apoptosis and the apoptotic rate reached 40% at a concentration of 40 µM (EC50 51.6 µM). Quercetin induced downregulation of Bcl-2 and upregulation of Bax, and increased cytochrome C in the cytoplasm in HSCs. The cleaved forms of caspase-9, caspase-3 and PARP-1 were also increased by quercetin. Furthermore, quercetin elevated mRNA and protein expression of calnexin and CHOP in HSCs but not in hepatocytes. Quercetin also increased phosphorylation of PERK and IRE1 and ATF6 cleavage. However, ERS inhibitor salubrinal significantly abrogated quercetin induction of HSC apoptosis. CONCLUSION: Quercetin activated ERS pathway in HSCs leading to apoptosis. We characterized an ERS-mediated mechanism for quercetin as a promising antifibrotic agent.


Asunto(s)
Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Estrelladas Hepáticas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Quercetina/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Estrés del Retículo Endoplásmico/fisiología , Células Estrelladas Hepáticas/metabolismo , Mitocondrias/metabolismo , Ratas
9.
IUBMB Life ; 67(8): 626-33, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26283102

RESUMEN

There is mounting evidence that tumor angiogenesis can be regulated by platelets (Plts), which serve as major sources and delivery vehicles of many proangiogenic cytokines including transforming growth factor-ß and vascular endothelial growth factor. Although considerable progress has been made in understanding the role for Plt secretion in tumor angiogenesis, very little is known about the precise mechanisms underlying cancer cell induction of Plt granule release. Here, we demonstrated that nonsmall cell lung cancer (NSCLC) cells directly induced Plt secretion of several angiogenic regulatory cytokines that promoted angiogenesis in concert. Moreover, we discovered that these Plt-derived angiogenesis modulators were regulated by different molecular pathways and could be largely inhibited by combination of multiple signaling inhibitors. Our present studies indicated that manipulation of Plt secretion of angiogenic cytokines without compromising hemostatic functions could provide a novel option for management of tumor angiogenesis and metastasis in NSCLC patients with thrombocytosis.


Asunto(s)
Plaquetas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Neovascularización Patológica , Trombocitosis/genética , Coagulación Sanguínea/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular , Citocinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Activación Plaquetaria/genética , Transducción de Señal/genética , Trombocitosis/metabolismo , Trombocitosis/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Heliyon ; 10(3): e24809, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318004

RESUMEN

Objective: Animal models of brain and spinal cord metastases of non-small cell lung cancer were established through the intracranial injection of PC-9 Luc cells with a brain stereotaxic device. This method provides a reliable modeling method for studying brain and spinal cord metastases of non-small cell lung cancer. Methods: PC-9 Luc cells at logarithmic growth stage were injected into the skulls of 5-week-old BALB/c nude mice at different cell volumes (30 × 104, 80 × 104) and different locations (using anterior fontanel as a location point, 1 mm from the coronal suture, and 1.5 mm from the sagittal suture on the right upper and right lower side of the skull). After 1 week of cell inoculation, fluorescence signals of tumor cells in the brain and spinal were detected using the IVIS Xenogen Imaging system. After 4 weeks, brain and spinal tissues from the nude mice were harvested. Following paraffin-embedded sectioning, HE staining was performed on the tissues. Results: The fluorescence signals revealed that both brain and spinal cord metastasis occurred in the mice where the cells were injected at the lower right side of the skull. There was only brain metastasis in the nude mice injected with 30 × 104 cells at the upper right side of the skull. Both brain and spinal cord metastasis occurred in the nude mice injected with 80 × 104 cells. The HE staining revealed that both brain and spinal cord metastasis occurred in the mice injected with different amounts of PC-9 Luc cells, consistent with the results detected using the IVIS Xenogen Imaging system, thereby demonstrating the reliability of detecting fluorescent signals in vivo to determine tumor growth. Conclusion: It is a reliable method to establish the animal model of brain and spinal cord metastases of non-small cell lung cancer by injecting different quantities of cells from different positions with a brain stereotaxic device. The IVIS Xenogen Imaging system has high reliability in detecting the fluorescence signals of brain and spinal cord metastatic tumors.

11.
Zhonghua Zhong Liu Za Zhi ; 35(10): 732-6, 2013 Oct.
Artículo en Zh | MEDLINE | ID: mdl-24378092

RESUMEN

OBJECTIVE: To observe the effects of hepatocyte growth factor (HGF) derived from tumor microenvironment and/or afatinib on the growth of human lung adenocarcinoma H1975 cells and explore the potential mechanisms by which HGF induces primary resistance to afatinib. METHODS: The effects of HGF, TGF-α and afatinib on the growth of H1975 cells were evaluated by MTT assay. The HGF concentrations of normal human fetal lung fibroblasts MRC-5 cells and human lung adenocarcinoma H1975 cells co-cultured or separately cultured were determined by ELISA assay. Western blot was used to detect the expressions of EGFR and Met signal pathway-related proteins and epithelial-mesenchymal transition (EMT) markers in H1975 cells treated with HGF and/or afatinib. RESULTS: The MTT assay showed that H1975 cells were hyposensitive to afatinib in the presence of HGF. The ELISA assay showed that HGF production by H1975 cells was less than 0.1 ng/2.0×10(6) cells, but HGF production by MRC-5 cells was (151.37 ± 2.07)ng/2.0×10(6) cells incubated for 48 h. When H1975 cells and MRC-5 cells were co-cultured for 72 h, the concentration of HGF in the culture supernatant was (61.13 ± 16.21)ng/ml. In the presence of HGF, the expression of p-Met, p-Akt and p-ERK proteins in the H1975 cells was markedly up-regulated. afatinib inhibited p-EGFR, but did not affect the expression of p-Met, p-Akt and p-ERK proteins. In the presence of afatinib, HGF up-regulated the expression of vimentin and down-regulated the expression of E-cadherin. CONCLUSIONS: HGF secreted by stromal cells in the tumor micro-environment may confer resistance to afatinib in H1975 cells by activation of the Met/PI3K/Akt and Met/MAPK/ERK signaling pathways, and is involved in the epithelial-mesenchymal transition process.


Asunto(s)
Adenocarcinoma/patología , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Factor de Crecimiento de Hepatocito , Neoplasias Pulmonares/patología , Quinazolinas/farmacología , Microambiente Tumoral , Adenocarcinoma/metabolismo , Adenocarcinoma del Pulmón , Afatinib , Cadherinas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Pulmón/citología , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador alfa/farmacología , Vimentina/metabolismo
12.
Eur J Pharmacol ; 945: 175571, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804545

RESUMEN

Aumolertinib is an irreversible third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), although it has been administered for the treatment of epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC). However, it is unclear whether aumolertinib combined with ionizing radiation (IR) has potential therapeutic effects in treating brain metastases (BM) tumors from NSCLC. This study explored the anti-tumor effects of aumolertinib combined with IR in epidermal growth factor receptor mutated (EGFRm) NSCLC BM tumors. First, we established a xenograft model of NSCLC BM tumors in BALB/c nude mice and assessed the anti-tumor effects of this combination. Furthermore, we examined the concentrations of aumolertinib in brain tissue and blood using liquid chromatography-mass spectrometry (LC-MS); after that, we used CCK-8, colony formation, flow cytometry assay, and immunofluorescence staining to detect the effects of aumolertinib combined with IR upon PC-9 and NCI-H1975 cells, such as cell proliferation, survival, apoptosis, cycle distribution, the situation of DNA damage, and the expression levels of relevant proteins which were detected via western blotting; finally, we chose a clinical case with which to explore the clinical benefits to the EGFRm NSCLC BM patient after the treatment of the aforementioned combination. The experiments of NSCLC BM tumor animal models demonstrated that the combination enhanced the therapeutic effects and increased the intracranial accumulation of aumolertinib; the combination can inhibit cell proliferation and survival, delay the repair of DNA damage, and increase the rates of cell apoptosis and aumolertinib abrogated G2/M phase arrest, which the IR induced; the clinical study verified that the combination demonstrated better patient benefits. In conclusion, our study demonstrated that combining aumolertinib and IR has promising anti-tumor effects in EGFR-mutant NSCLC and that this combined treatment modality may be employed as a potential therapeutic strategy for EGFR-mutant NSCLC BM patients clinically.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Desnudos , Resistencia a Antineoplásicos , Línea Celular Tumoral , Receptores ErbB/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Encéfalo/metabolismo , Radiación Ionizante , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación
13.
Transl Cancer Res ; 12(7): 1753-1764, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37588735

RESUMEN

Background: High expression of CLDN6 in hepatocellular carcinoma (HCC) has been widely reported. During this research, CLDN6's effect on the infiltration, migration, and apoptosis of HCC cells was investigated. Methods: Initially, the knockdown and overexpression of CLDN6 in HCC cells were carried out by short interfering RNA (siRNA) and plasmid transfection. The transfection efficiency was detected by means of a quantitative real-time polymerase chain reaction (qRT-PCR) assay, immunofluorescence staining, and Western blot analysis. Transwell and wound-healing assays were employed for the detection of invasion and migration ability. CCK-8 assay and flow cytometry were utilized for the detection of apoptosis. Finally, analysis of the expression of pathway-related proteins (JAK2, STAT3, p-JAK2, and p-STAT3) and the regulation of apoptotic responses (by measurement of cleaved caspase-3, Bax, and Bcl-2 levels) was carried out. Results: When CLDN6 was knocked down, the cellular invasion and migration ability decreased, and apoptosis increased, which decreased p-JAK2, p-STAT3, and anti-apoptotic protein bcl-2 expression. Furthermore, an elevation was observed in cleaved caspase-3 and Bax expression levels. Contrarily, upon overexpression of CDLN6, the aforementioned experimental results were reversed. Conclusions: CLDN6 knockdown results in the inhibition of HCC cells' infiltration and migration and promotes apoptosis via downregulation of the JAK2/STAT3 signaling pathway.

14.
J Inflamm (Lond) ; 20(1): 28, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605161

RESUMEN

BACKGROUND: Ferroptosis in alveolar and bronchial epithelial cells is one of the main mechanisms underlying the development of chronic obstructive pulmonary disease (COPD). Sodium pyruvate (NaPyr) is a natural antioxidant in the body, exhibiting anti-inflammatory and antioxidant activities. NaPyr has been used in a Phase II clinical trial as a novel therapy for COPD; however, the mechanism underlying NaPyr-mediated therapeutic benefits in COPD is not well understood. OBJECTIVE: We aimed to assess the protective effects of NaPyr and elucidate its potential mechanism in cigarette smoke extract (CSE)-induced ferroptosis.To minic the inflammatory response and ferroptosis triggered by cigarette smoke in COPD in an invitro cell based system, we expose a human bronchial epithelial cells to CSE. METHODS: To minic the inflammatory response and ferroptosis triggered by cigarette smoke in COPD in an invitro cell based system, the A549 (human lung carcinoma epithelial cells) and BEAS-2B (bronchial epithelial cells) cell lines were cultured, followed by treatment with CSE. To measure cellular viability and iron levels, we determined the levels of malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), mitochondrial superoxide (MitoSOX), membrane potential (MMP), and inflammatory factors (tumor necrosis factor [TNF] and interleukin [IL]-8), and examined CSE-induced pulmonary inflammation and ferroptosis. To clarify the molecular mechanisms of NaPyr in COPD therapy, we performed western blotting and real-time PCR (qPCR) to determine the expression of glutathione peroxidase 4 (GPX4), nuclear factor E2-related factor 2 (Nrf2), and cyclooxygenase 2 (COX2). RESULTS: We found that NaPyr effectively mitigated CSE-induced apoptosis and improved apoptosis induced by erastin, a ferroptosis inducer. NaPyr significantly decreased iron and MDA levels and increased GSH levels in CSE-induced cells. Furthermore, NaPyr suppressed ferroptosis characteristics, such as decreased levels of ROS, MitoSOX, and MMP. NaPyr significantly increases the expression levels of GPX4 and Nrf2, indicating that activation of the GPX4/Nrf2 axis could inhibit ferroptosis in alveolar and bronchial epithelial cells. More importantly, NaPyr inhibited the secretion of downstream inflammatory factors, including TNF and IL-8, by decreasing COX2 expression levels to suppress CSE-induced inflammation. CONCLUSION: Accordingly, NaPyr could mitigate CSE-induced ferroptosis in alveolar and bronchial epithelial cells by activating the GPX4/Nrf2 axis and decreasing COX2 expression levels. In addition, NaPyr reduced the secretion of inflammatory factors (TNF and IL-8), affording a novel therapeutic candidate for COPD.

15.
Hum Gene Ther ; 34(11-12): 540-553, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37183407

RESUMEN

Lung cancer (LC) is the leading cause of death worldwide, and lung adenocarcinoma (LUAD) is the most common form of LC. The abnormally high expression of myelin protein zero-like 1 (MPZL1) promotes the malignant progression of various tumors. However, there is no relevant report on the functional role of MPZL1 in LUAU. In this study, we applied Illumina sequencing to screen differentially expressed genes. Subsequently, MPZL1 was selected as hub gene for quantitative real-time polymerase chain reaction (qRT-PCR) and CCK8 assay. The expression level of MPZL1 was analyzed by immunohistochemistry, immunofluorescence, western blot, and qRT-PCR. After silencing or overexpressing MPZL1, CCK8, EDU, clone formation, scratch healing, invasion, and nude mouse tumor-bearing experiments were performed to detect the abilities of cell proliferation, migration, invasion, and tumorigenicity. Moreover, qRT-PCR, western blot, coimmunoprecipitation, and scratch healing assays were conducted to explore the transcriptional regulatory factors of MPZL1. Finally, the relationship between MPZL1 and immunotherapy was explored through public databases and validated in vivo. The results show that a total of 196 high-expressed genes and 496 low-expressed genes were screened. Differential genes are mainly enriched in cell proliferation and division, protein binding, and other pathways and functions. MPZL1 was selected as the hub gene and upregulated in LUAD tissues and cells. Silencing MPZL1 inhibited the cell proliferation and cloning formation, and the growth of tumor. Conversely, overexpression of MPZL1 has the opposite effect. In addition, MPZL1 combines with the transforming growth factor-ß1 to promote the progress of LUAD. Finally, we found that high expression of MPZL1 is negatively correlated with infiltration of CD8+ cells and may lead to immunotherapy resistance. In summary, this study revealed a new mechanism by which MPZL1 promotes LUAD progression by enhancing tumor proliferation, invasion, migration, and suppressing immune function.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Inmunidad , Neoplasias Pulmonares/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Humanos
16.
Acta Pharmacol Sin ; 33(10): 1325-31, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22983392

RESUMEN

AIM: To investigate whether luteolin, a highly prevalent flavonoid, reverses the effects of epithelial-mesenchymal transition (EMT) in vitro and in vivo and to determine the mechanisms underlying this reversal. METHODS: Murine malignant melanoma B16F10 cells were exposed to 1% O(2) for 24 h. Cellular mobility and adhesion were assessed using Boyden chamber transwell assay and cell adhesion assay, respectively. EMT-related proteins, such as E-cadherin and N-cadherin, were examined using Western blotting. Female C57BL/6 mice (6 to 8 weeks old) were injected with B16F10 cells (1×10(6) cells in 0.2 mL per mouse) via the lateral tail vein. The mice were treated with luteolin (10 or 20 mg/kg, ip) daily for 23 d. On the 23rd day after tumor injection, the mice were sacrificed, and the lungs were collected, and metastatic foci in the lung surfaces were photographed. Tissue sections were analyzed with immunohistochemistry and HE staining. RESULTS: Hypoxia changed the morphology of B16F10 cells in vitro from the cobblestone-like to mesenchymal-like strips, which was accompanied by increased cellular adhesion and invasion. Luteolin (5-50 µmol/L) suppressed the hypoxia-induced changes in the cells in a dose-dependent manner. Hypoxia significantly decreased the expression of E-cadherin while increased the expression of N-cadherin in the cells (indicating the occurrence of EMT-like transformation), which was reversed by luteolin (5 µmol/L). In B16F10 cells, luteolin up-regulated E-cadherin at least partly via inhibiting the ß3 integrin/FAK signal pathway. In experimental metastasis model mice, treatment with luteolin (10 or 20 mg/kg) reduced metastatic colonization in the lungs by 50%. Furthermore, the treatment increased the expression of E-cadherin while reduced the expression of vimentin and ß3 integrin in the tumor tissues. CONCLUSION: Luteolin inhibits the hypoxia-induced EMT in malignant melanoma cells both in vitro and in vivo via the regulation of ß3 integrin, suggesting that luteolin may be applied as a potential anticancer chemopreventative and chemotherapeutic agent.


Asunto(s)
Antineoplásicos/uso terapéutico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Integrina beta3/metabolismo , Neoplasias Pulmonares/prevención & control , Luteolina/uso terapéutico , Melanoma Experimental/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Western Blotting , Cadherinas/biosíntesis , Adhesión Celular/efectos de los fármacos , Técnicas de Cultivo de Célula , Hipoxia de la Célula , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Inmunohistoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Luteolina/administración & dosificación , Luteolina/farmacología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/secundario , Ratones , Ratones Endogámicos C57BL , Invasividad Neoplásica
17.
Planta Med ; 78(9): 890-5, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22532019

RESUMEN

Xanthatin, a natural bioactive compound of sesquiterpene lactones, was isolated and purified from air-dried aerial part of Xanthium sibiricum Patrin ex Widder. In the present study, we demonstrated the significant antiproliferative and proapoptotic effects of xanthatin on human gastric carcinoma MKN-45 cells. MTS assay showed that xanthatin produced obvious cytotoxicity in MKN-45 cells with IC50 values of 18.6, 9.3, and 3.9 µM for 12, 24, and 48 h, respectively. Results of flow cytometry analysis indicated that the antiproliferative activity induced by xanthatin might be executed via G2/M cell cycle arrest and proapoptosis in MKN-45 cells. Western blot analysis elucidated that: a) xanthatin downregulated expression of Chk1 and Chk2 and phosphorylation of CDC2, which are known as key G2/M transition regulators; b) xanthatin increased p53 activation, decreased the bcl-2/bax ratio and the levels of downstream procaspase-9 and procaspase-3, which are key regulators in the intrinsic apoptosis pathway; c) xanthatin blocked phosphorylation of NF-κB (p65 subunit) and of IκBα, which might contribute to its proapoptotic effects on MKN-45 cells. In conclusion, our results suggest that xanthatin may have therapeutic potential against human gastric carcinoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma/tratamiento farmacológico , Furanos/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos Fitogénicos/farmacología , Proteína Quinasa CDC2 , Carcinoma/patología , División Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes , Ensayos de Selección de Medicamentos Antitumorales , Furanos/aislamiento & purificación , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Genes p53 , Humanos , Proteínas I-kappa B/metabolismo , Concentración 50 Inhibidora , Inhibidor NF-kappaB alfa , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Neoplasias Gástricas/patología , Factor de Transcripción ReIA/metabolismo , Proteína X Asociada a bcl-2/metabolismo
18.
J Inflamm (Lond) ; 18(1): 23, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112202

RESUMEN

BACKGROUND: It is well accepted that the immune system efficiently contributes to positive outcomes of chemotherapeutic cancer treatment by activating immunogenic cell death (ICD). However, only a limited number of ICD-inducing compounds are well characterized at present; therefore, identification of novel ICD inducers is urgently needed for cancer drug discovery, and the need is becoming increasingly urgent. METHODS: Herein, we assessed the antitumour activity of bullatacin by MTS assay and apoptosis assay. ICD biomarkers, such as calreticulin (CRT), high-mobility group protein B1 (HMGB-1), heat shock protein (HSP)70, HSP90 and ATP, were assessed by Western blotting, ELISA and flow cytometry. Western blot and qPCR assays were performed to explore the underlying mechanisms of bullatacin-induced ICD. Flow cytometry was used to detect macrophage phagocytosis. RESULTS: First, bullatacin induced apoptosis in both SW480 cells and HT-29 cells in a time-dependent manner at 10 nM, as assessed by flow cytometry. Moreover, Western blot and flow cytometry assays showed that CRT and HSP90 (biomarkers of early ICD) significantly accumulated on the cell membrane surface after approximately 6 h of treatment with bullatacin. In addition, ELISAs and Western blot assays showed that the second set of hallmarks required for ICD (HMGB1, HSP70 and HSP90) were released in the conditioned media of both SW480 and HT-29 cells after 36 h of treatment. Furthermore, qPCR and Western blot assays indicated that bullatacin triggered ICD via activation of the endoplasmic reticulum stress (ERS) signalling pathway. Finally, bullatacin promoted macrophage phagocytosis. CONCLUSION: This study documents that bullatacin, a novel ICD inducer, triggers immunogenic tumour cell death by activating ERS even at a relatively low concentration in vitro.

19.
Front Pharmacol ; 12: 671328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054543

RESUMEN

The emergence of secondary resistance is the main failure cause of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) as a targeted therapy for non-small cell lung cancer (NSCLC). EGFR mutations of NSCLC cells can markedly increase glutamine transporter (SLC1A5) expression, thereby increasing glutamine metabolism. Glutamine metabolites can activate EGFR downstream signals, including mTOR, ERK1/2, STAT3, etc., which is an important cause for the decreased sensitivity of NSCLC to EGFR-TKIs. CCK8 and Annexin V/PI assays were conducted to detect the effects of Almonertinib and/or V9302 on the proliferation and apoptosis of NSCLC cells. Proteomics was used to determine the effect of Almonertinib on energy metabolism-related proteins in NSCLC. siRNA transfection was performed to study the effect of SLC1A5 down-regulation on cell proliferation. In addition, the effects of drugs on colony formation capacity were determined by colony formation assay. Immunofluorescence and Western blot were utilized to detect the apoptosis- and autophagy-related proteins expression. DAPI staining was utilized to detect the effect of drugs on the nucleus. Transmission electron microscope was used to observe the changes of submicroscopic structure such as autophagosomes and nucleus of cells. mCherry-GFP-LC3B tandem fluorescent protein was to used to detect the level of autophagy flux. Tumor-bearing nude mouse model was utilized to detect the effect of V9302 on the anti-tumor effect of Almonertinib in vivo. As a result, Almonertinib suppressed H1975 and A549 cell proliferation depended on its dosage and treatment duration, and it also induced apoptosis. A549 cells with wild-type EGFR had lower sensitivity to Almonertinib. The expression of SLC1A5 was up-regulated by stimulating with low concentration of Almonertinib in NSCLC cells. SLC1A5 was highly expressed in A549 cells with wild-type EGFR. Glutamine deletion or SLC1A5 inhibition/silencing inhibited the proliferation of NSCLC cells, and decreased cellular glutamine uptake. The combination of SLC1A5 inhibitor V9302 and Almonertinib had a synergistic inhibitory effect on the proliferation of NSCLC. V9302 enhanced the effect of Almonertinib in apoptosis-inducing in NSCLC cells. The combination of V9302 and Almonertinib might induce apoptosis by inhibiting autophagy.

20.
Front Pharmacol ; 12: 750031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630120

RESUMEN

Roughly one third of non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI)-sensitive mutated (EGFRm) tumors experience disease progression through central nervous system (CNS) metastases during treatment. Although EGFR-TKIs have been reported to be favored in some patients with EGFRm NSCLC CNS metastases, novel EGFR-TKIs with proven efficacy in CNS pathologies are clinically needed.To investigate whether almonertinib, a novel third-generation EGFR-TKI for NSCLC, can cross the blood-brain barrier (BBB) and deliver treatment for EGFR-mutant NSCLC brain metastases and spinal cord metastases, we constructed NSCLC brain metastasis and spinal cord metastasis models in vivo to observe the anti-tumor effects of almonertinib. Using ABCB1-MDCK and BCRP-MDCK monolayer cells as the in vitro study model, the effects of transport time and drug concentration on the apparent permeability coefficient of almonertinib and its active metabolite, HAS-719, were investigated. The results of this study show that almonertinib can significantly inhibit PC9 brain and spinal cord metastases. Pharmacokinetic studies in mice revealed that almonertinib has good BBB penetration ability, whereas the metabolite HAS-719 does not easily penetrate the BBB. Early clinical evidence of almonertinib activity in patients with EGFRm-advanced NSCLC and brain metastases has also been reported. In conclusion, almonertinib easily penetrates the BBB and inhibits advanced NSCLC brain and spinal cord metastases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA