Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Biochemistry ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985857

RESUMEN

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein-coupled receptor that has emerged as a promising therapeutic target in cancer and autoimmune diseases. In the present study, we solved the cryo-electron microscopy (cryo-EM) structure of the human CCR8-Gi complex in the absence of a ligand at 2.58 Å. Structural analysis and comparison revealed that our apo CCR8 structure undergoes some conformational changes and is similar to that in the CCL1-CCR8 complex structure, indicating an active state. In addition, the key residues of CCR8 involved in the recognition of LMD-009, a potent nonpeptide agonist, were investigated by mutating CCR8 and testing the calcium flux induced by LMD-009-CCR8 interaction. Three mutants of CCR8, Y1133.32A, Y1724.64A, and E2867.39A, showed a dramatically decreased ability in mediating calcium mobilization, indicating their key interaction with LMD-009 and key roles in activation. These structural and biochemical analyses enrich molecular insights into the agonism and activation of CCR8 and will facilitate CCR8-targeted therapy.

2.
J Neuroinflammation ; 12: 177, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26382037

RESUMEN

BACKGROUND: Pathological features of Alzheimer's disease (AD) include aggregation of amyloid beta (Aß) and tau protein. Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, has been implicated in the toxicity of aggregated Aß. It remains unclear whether MIF affects hyperphosphorylation and aggregation of tau. METHODS: The effects of MIF deficiency in tau hyperphosphorylation were examined in Mif (-/-) mice receiving intracerebroventricular (ICV) injection of streptozotocin (STZ) and in APP/PS1 transgenic mice mated with Mif (-/-) mice. MIF expression and astrocyte activation were evaluated in ICV-STZ mice using immunofluorescence staining. Cultured primary astrocytes were treated with high glucose to mimic STZ function in vitro, and the condition medium (CM) was collected. The level of tau hyperphosphorylation in neurons treated with the astrocyte CM was determined using Western blotting. RESULTS: MIF deficiency attenuated tau hyperphosphorylation in mice. ICV injection of STZ increased astrocyte activation and MIF expression in the hippocampus. MIF deficiency attenuated astrocyte activation in ICV-STZ mice. CM from high glucose-treated WT astrocytes increased tau hyperphosphorylation in cultured primary neurons, an effect absent from Mif (-/-) astrocytes and WT astrocytes treated with the MIF inhibitor ISO-1. ISO-1 had no direct effect on tau phosphorylation in cultured primary neurons. CONCLUSIONS: These results suggest that MIF deficiency is associated with reduced astrocyte activation and tau hyperphosphorylation in the mouse AD models tested. Inhibition of MIF and MIF-induced astrocyte activation may be useful in AD prevention and therapy.


Asunto(s)
Enfermedad de Alzheimer/genética , Factores Inhibidores de la Migración de Macrófagos/deficiencia , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Femenino , Glucosa/farmacología , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Factores Inhibidores de la Migración de Macrófagos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación , Cultivo Primario de Células
3.
Cell Biol Int ; 39(1): 3-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25052386

RESUMEN

Resolution is an active process that terminates inflammatory response to maintain health. Acute inflammation and its timely resolution are important in host response to danger signals. Unresolved inflammation is associated with widely recurrent diseases. Resolvins, including the D and E series, are endogenous lipid mediators generated during the resolution phase of acute of inflammation from the ω-3 PUFAs, DHA, and EPA. They have anti-inflammatory and pro-resolving properties that have been determined in many inflammation studies in animal models. In this review, we provide an updated overview of biosynthesis, actions, and signaling pathways of resolvins, thereby underscoring their diverse protective roles and introducing novel therapeutic strategies for inflammation-associated diseases.


Asunto(s)
Antiinflamatorios/uso terapéutico , Ácidos Docosahexaenoicos/uso terapéutico , Inflamación/tratamiento farmacológico , Animales , Antiinflamatorios/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , MicroARNs/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Cancer Immunol Res ; 12(1): 72-90, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-37956411

RESUMEN

Pancreatic cancer is a deadly disease that is largely resistant to immunotherapy, in part because of the accumulation of immunosuppressive cells in the tumor microenvironment (TME). Much evidence suggests that tumor-derived exosomes (TDE) contribute to the immunosuppressive activity mediated by myeloid-derived suppressor cells (MDSC) within the pancreatic cancer TME. However, the underlying mechanisms remain elusive. Herein, we report that macrophage migration inhibitory factor (MIF) in TDEs has a key role in inducing MDSC formation in pancreatic cancer. We identified MIF in both human and murine pancreatic cancer-derived exosomes. Upon specific shRNA-mediated knockdown of MIF, the ability of pancreatic cancer-derived exosomes to promote MDSC differentiation was abrogated. This phenotype was rescued by reexpression of the wild-type form of MIF rather than a tautomerase-null mutant or a thiol-protein oxidoreductase-null mutant, indicating that both MIF enzyme activity sites play a role in exosome-induced MDSC formation in pancreatic cancer. RNA sequencing data indicated that MIF tautomerase regulated the expression of genes required for MDSC differentiation, recruitment, and activation. We therefore developed a MIF tautomerase inhibitor, IPG1576. The inhibitor effectively inhibited exosome-induced MDSC differentiation in vitro and reduced tumor growth in an orthotopic pancreatic cancer model, which was associated with decreased numbers of MDSCs and increased infiltration of CD8+ T cells in the TME. Collectively, our findings highlight a pivotal role for MIF in exosome-induced MDSC differentiation in pancreatic cancer and underscore the potential of MIF tautomerase inhibitors to reverse the immunosuppressive pancreatic cancer microenvironment, thereby augmenting anticancer immune responses.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Células Supresoras de Origen Mieloide , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Diferenciación Celular , Línea Celular Tumoral , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Microambiente Tumoral
5.
J Med Chem ; 66(18): 12762-12775, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37696000

RESUMEN

CD38 is a crucial NADase in mammalian tissues that degrades NAD+ and thus regulates cellular NAD+ levels. Abnormal CD38 expression is linked to mitochondrial dysfunction under several pathological conditions. We present a novel CD38 inhibitor, compound 1, with high potency for CD38 (IC50 of 11 nM) and minimal activity against other targets. In a Pus1 knockout (Pus1-/-) mouse model of mitochondrial myopathy, compound 1 treatment rescued the decline in running endurance in a dose-dependent manner, associated with an elevated NAD+ level in muscle tissue, increased expression of Nrf2, which is known to promote mitochondrial biogenesis, and reduced lactate production. RNA sequencing data indicated that compound 1 has a great effect on mitochondrial function, metabolic processes, muscle contraction/development, and actin filament organization via regulating the expression of relevant genes. Compound 1 is a promising candidate for its excellent in vivo efficacy, favorable pharmacokinetics, and attractive safety profile.

6.
J Med Chem ; 66(7): 4548-4564, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36988587

RESUMEN

Recently, there has been increasing evidence indicating that the CC chemokine receptor 8 (CCR8) plays an important role in mediating the recruitment and immunosuppressive function of regulatory T (Treg) cells in the tumor microenvironment. Therefore, the development of a specific CCR8 antagonist presents a potential therapeutic strategy against cancer. Despite a few small molecules having been reported as CCR8 antagonists, none has progressed to the clinical stage. Herein, we described a potent and selective CCR8 antagonist (compound 1, IPG7236) as the first small molecule to advance to the clinical stage. IPG7236 demonstrated an anti-cancer effect via modulating Treg and cytotoxic T (CD8+ T) cells. IPG7236 alone or in combination with PD-1 antibody exhibited significant tumor suppression effects in the mouse xenograft model of human breast cancer. IPG7236 is a promising clinical candidate that targets CCR8 with excellent in vitro ADMET properties, pharmacokinetics, safety profiles, and in vivo efficacy.


Asunto(s)
Neoplasias , Humanos , Ratones , Animales , Receptores CCR8 , Microambiente Tumoral
7.
J Med Chem ; 66(23): 15926-15943, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38047891

RESUMEN

GPR183 is required for humoral immune responses, and its polymorphisms have been associated with inflammatory autoimmune diseases. Despite increasing attention to GPR183 as a potential therapeutic target for autoimmune diseases, relatively few antagonists have been reported, and none of them have progressed to the clinical stage. In this study, we discovered a highly potent GPR183 antagonist, compound 32, with good aqueous solubility, excellent selectivity, and pharmacokinetic properties. Meanwhile, compound 32 showed exceptional efficacy for rheumatoid arthritis (RA) disease in a mouse collagen-induced arthritis (CIA) model, with an efficacious dose of 0.1 mg/kg. Functionally, compound 32 significantly reduced the swelling of paws and joints, the gene expression of proinflammatory cytokines, MCP-1, MMPs, and VEGF, inflammatory cell infiltration, cartilage damage, pannus formation, and bone erosion in the joints of CIA mice in a dose-dependent manner. Hence, these findings suggest compound 32 as a valuable molecule for further development.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratones , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Citocinas/metabolismo
8.
Toxicol Appl Pharmacol ; 256(3): 300-13, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21704645

RESUMEN

Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-ß (Aß). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aß-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aß-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aß led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24h following the exposure. The Aß-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F(2)-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aß neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Encéfalo/efectos de los fármacos , Quimiocina CXCL12/farmacología , Quimiocina CXCL2/farmacología , Quimiocinas/farmacología , Fármacos Neuroprotectores/farmacología , Péptidos beta-Amiloides/toxicidad , Animales , Apoptosis/efectos de los fármacos , F2-Isoprostanos/análisis , Ratones , Ratones Endogámicos C57BL , Neuronas/química , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interleucina-8B/metabolismo
9.
Neurobiol Dis ; 39(2): 156-68, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20381617

RESUMEN

Indirubin and its derivatives have been shown to possess potent inhibitory effects on cyclin-dependent protein kinase 5 and glycogen synthase kinase 3beta, two protein kinases involved in abnormal hyperphosphorylation of tau and amyloid precursor protein processing/beta-amyloid (Abeta) production. Here, we showed that systemic treatment of APP and presenilin 1 (PS1) transgenic mice, a robust Alzheimer's disease (AD) mouse model, with indirubin-3'-monoxime (IMX; 20mg/kg; 3 times weekly), for as little as 2months, significantly attenuated spatial memory deficits. This was accompanied by a marked decrease in several AD-like phenotypes, including Abeta deposition, tau hyperphosphorylation, accumulation of activated microglia and astrocytes around Abeta plaques, and loss of synaptophysin immunoreactivity. These findings suggest that IMX is a potential therapeutic agent to combat AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/metabolismo , Indoles/uso terapéutico , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Oximas/uso terapéutico , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Recuento de Células/métodos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática/métodos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/metabolismo , Humanos , Indoles/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Neocórtex/metabolismo , Pruebas Neuropsicológicas , Oximas/farmacología , Presenilina-1/genética , Sinaptofisina/metabolismo , Proteínas tau/metabolismo
10.
J Neurosci ; 28(45): 11622-34, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18987198

RESUMEN

Recent studies have revealed that disruption of vitamin A signaling observed in Alzheimer's disease (AD) leads to beta-amyloid (Abeta) accumulation and memory deficits in rodents. The aim of the present study was to evaluate the therapeutic effect of all-trans retinoic acid (ATRA), an active metabolite of vitamin A, on the neuropathology and deficits of spatial learning and memory in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic mice, a well established AD mouse model. Here we report a robust decrease in brain Abeta deposition and tau phosphorylation in the blinded study of APP/PS1 transgenic mice treated intraperitoneally for 8 weeks with ATRA (20 mg/kg, three times weekly, initiated when the mice were 5 months old). This was accompanied by a significant decrease in the APP phosphorylation and processing. The activity of cyclin-dependent kinase 5, a major kinase involved in both APP and tau phosphorylation, was markedly downregulated by ATRA treatment. The ATRA-treated APP/PS1 mice showed decreased activation of microglia and astrocytes, attenuated neuronal degeneration, and improved spatial learning and memory compared with the vehicle-treated APP/PS1 mice. These results support ATRA as an effective therapeutic agent for the prevention and treatment of AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Antineoplásicos/uso terapéutico , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Tretinoina/uso terapéutico , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Astrocitos/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Presenilina-1/genética , Tiempo de Reacción/efectos de los fármacos
11.
Neurosci Lett ; 692: 53-63, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30391320

RESUMEN

Converging evidence demonstrates an important role for gangliosides in brain function and neurodegenerative diseases. Exogenous GM1 is broadly neuroprotective, including in rodent, feline, and primate models of Parkinson's disease, and has shown positive effects in clinical trials. We and others have shown that inhibition of the ganglioside biosynthetic enzyme GD3 synthase (GD3S) increases endogenous levels GM1 ganglioside. We recently reported that targeted deletion of St8sia1, the gene that codes for GD3S, prevents motor impairments and significantly attenuates neurodegeneration induced by 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The current study investigated the effects of GD3S inhibition on the neurotoxicity and parkinsonism induced by MPTP. Mice were injected intrastriatally with a lentiviral-vector-mediated shRNA construct targeting GD3S (shGD3S) or a scrambled-sequence control (scrRNA). An MPTP regimen of 18 mg/kg x 5 days reduced tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta of scrRNA-treated mice by nearly two-thirds. In mice treated with shGD3S the MPTP-induced lesion was approximately half that size. MPTP induced bradykinesia and deficits in fine motor skills in mice treated with scrRNA. These deficits were absent in shGD3S-treated mice. These results suggest that inhibition of GD3S protects against the nigrostriatal damage, bradykinesia, and fine-motor-skill deficits associated with MPTP administration.


Asunto(s)
Actividad Motora , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/terapia , Sialiltransferasas/genética , Animales , Cuerpo Estriado/enzimología , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/enzimología , Técnicas de Silenciamiento del Gen/métodos , Vectores Genéticos/fisiología , Lentivirus/fisiología , Masculino , Ratones Endogámicos C57BL , Trastornos Parkinsonianos/fisiopatología , Sialiltransferasas/metabolismo , Sustancia Negra/enzimología , Sustancia Negra/patología
12.
Cytokine Growth Factor Rev ; 16(6): 637-58, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15998596

RESUMEN

The internalization and intracellular trafficking of chemokine receptors have important implications for the cellular responses elicited by chemokine receptors. The major pathway by which chemokine receptors internalize is the clathrin-mediated pathway, but some receptors may utilize lipid rafts/caveolae-dependent internalization routes. This review discusses the current knowledge and controversies regarding these two different routes of endocytosis. The functional consequences of internalization and the regulation of chemokine receptor recycling will also be addressed. Modifications of chemokine receptors, such as palmitoylation, ubiquitination, glycosylation, and sulfation, may also impact trafficking, chemotaxis and signaling. Finally, this review will cover the internalization and trafficking of viral and decoy chemokine receptors.


Asunto(s)
Movimiento Celular , Vesículas Cubiertas por Clatrina/fisiología , Endocitosis , Receptores de Quimiocina/fisiología , Animales , Humanos , Microdominios de Membrana/fisiología , Transporte de Proteínas/fisiología , Receptores de Quimiocina/metabolismo , Proteínas de Unión al GTP rab/fisiología
13.
Curr Med Chem ; 14(23): 2456-70, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17979699

RESUMEN

Chemokines and chemokine receptors, primarily found to play a role in leukocyte migration to the inflammatory sites or to second lymphoid organs, have recently been found expressed on the resident cells of the central nervous system (CNS). These proteins are important for the development of the CNS and are involved in normal brain functions such as synaptic transmission. Increasing lines of evidence have implicated an involvement for chemokines and their receptors in several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), human immunodeficiency virus-associated dementia (HAD), multiple sclerosis (MS), and stroke. Specific inhibition of the biological activities of chemokine receptors could gain therapeutic benefit for these neurodegenerative disorders. In recent years, non-peptide antagonists of chemokine receptors have been disclosed and tested in relevant pharmacological models and some of these inhibitors have entered clinical trials. The aim of this review is to outline the recent progress regarding the role of chemokines and their receptors in neurodegenerative diseases and the advancements in the development of chemokine receptor inhibitors as potential therapeutic approaches for these neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Receptores de Quimiocina/fisiología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Sistema Nervioso Central/metabolismo , Quimiocinas/metabolismo , Regulación de la Expresión Génica , VIH/metabolismo , Humanos , Modelos Biológicos , Modelos Químicos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Receptores de Quimiocina/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología , Resultado del Tratamiento
14.
Mol Biol Cell ; 15(5): 2456-69, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15004234

RESUMEN

Agonist-stimulated internalization followed by recycling to the cell membrane play an important role in fine-tuning the activity of chemokine receptors. Because the recycling of chemokine receptors is critical for the reestablishment of the cellular responsiveness to ligand, it is crucial to understand the mechanisms underlying the receptor recycling and resensitization. In the present study, we have demonstrated that the chemokine receptor CXCR2 associated with myosin Vb and Rab11-family interacting protein 2 (FIP2) in a ligand-dependent manner. Truncation of the C-terminal domain of the receptor did not affect the association, suggesting that the interactions occur upstream of the C terminus of CXCR2. After ligand stimulation, the internalized CXCR2 colocalized with myosin Vb and Rab11-FIP2 in Rab11a-positive vesicles. The colocalization lasted for approximately 2 h, and little colocalization was observed after 4 h of ligand stimulation. CXCR2 also colocalized with myosin Vb tail or Rab11-FIP2 (129-512), the N-terminal-truncated mutants of myosin Vb and Rab11-FIP2, respectively, but in a highly condensed manner. Expression of the enhanced green fluorescent protein-tagged myosin Vb tail significantly retarded the recycling and resensitization of CXCR2. CXCR2 recycling was also reduced by the expression Rab11-FIP2 (129-512). Moreover, expression of the myosin Vb tail reduced CXCR2- and CXCR4-mediated chemotaxis. These data indicate that Rab11-FIP2 and myosin Vb regulate CXCR2 recycling and receptor-mediated chemotaxis and that passage of internalized CXCR2 through Rab11a-positive recycling system is critical for physiological response to a chemokine.


Asunto(s)
Proteínas Portadoras/fisiología , Quimiotaxis/fisiología , Proteínas de la Membrana/fisiología , Miosina Tipo V/fisiología , Receptores de Interleucina-8B/metabolismo , Animales , Calcio/análisis , Calcio/metabolismo , Proteínas Portadoras/análisis , Proteínas Portadoras/metabolismo , Técnicas de Cultivo de Célula , Quimiocina CXCL1 , Quimiocina CXCL12 , Quimiocinas CXC/farmacología , Endosomas/química , Proteínas Fluorescentes Verdes/análisis , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intercelular/farmacología , Ligandos , Proteínas de la Membrana/análisis , Proteínas de la Membrana/metabolismo , Miosinas/análisis , Miosinas/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Ratas , Receptores de Interleucina-8B/análisis , Receptores de Interleucina-8B/fisiología , Proteínas de Unión al GTP rab
15.
JAMA Neurol ; 74(6): 677-685, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28437540

RESUMEN

Importance: Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by selective loss of upper and lower motor neurons. Patients with ALS have persistent peripheral and central inflammatory responses including abnormally functioning T cells and activated microglia. However, much less is known about the inflammatory gene profile of circulating innate immune monocytes in these patients. Objective: To characterize the transcriptomics of peripheral monocytes in patients with ALS. Design, Setting, and Participants: Monocytes were isolated from peripheral blood of 43 patients with ALS and 22 healthy control individuals. Total RNA was extracted from the monocytes and subjected to deep RNA sequencing, and these results were validated by quantitative reverse transcription polymerase chain reaction. Main Outcomes and Measures: The differential expressed gene signatures of these monocytes were identified using unbiased RNA sequencing strategy for gene expression profiling. Results: The demographics between the patients with ALS (mean [SD] age, 58.8 [1.57] years; 55.8% were men and 44.2% were women; 90.7% were white, 4.65% were Hispanic, 2.33% were black, and 2.33% were Asian) and control individuals were similar (mean [SD] age, 57.6 [2.15] years; 50.0% were men and 50.0% were women; 90.9% were white, none were Hispanic, none were black, and 9.09% were Asian). RNA sequencing data from negative selected monocytes revealed 233 differential expressed genes in ALS monocytes compared with healthy control monocytes. Notably, ALS monocytes demonstrated a unique inflammation-related gene expression profile, the most prominent of which, including IL1B, IL8, FOSB, CXCL1, and CXCL2, were confirmed by quantitative reverse transcription polymerase chain reaction (IL8, mean [SE], 1.00 [0.18]; P = .002; FOSB, 1.00 [0.21]; P = .009; CXCL1, 1.00 [0.14]; P = .002; and CXCL2, 1.00 [0.11]; P = .01). Amyotrophic lateral sclerosis monocytes from rapidly progressing patients had more proinflammatory DEGs than monocytes from slowly progressing patients. Conclusions and Relevance: Our data indicate that ALS monocytes are skewed toward a proinflammatory state in the peripheral circulation and may play a role in ALS disease progression, especially in rapidly progressing patients. This increased inflammatory response of peripheral immune cells may provide a potential target for disease-modifying therapy in patients with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/sangre , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Inflamación/sangre , Monocitos/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Análisis de Secuencia de ARN
16.
J Leukoc Biol ; 97(1): 61-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25359998

RESUMEN

The homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages plays a different role in the process of inflammation. Chemokines are the major mediators of macrophage chemotaxis, but how they differentially regulate M1 and M2 macrophages remains largely unclear. In the present study, we attempted to screen chemokines that differentially induce chemotaxis of M1 and M2 macrophages and to explore the underlying mechanism. Among the 41 chemokines that specifically bind to 20 chemokine receptors, CCL19, CCL21, CCL24, CCL25, CXCL8, CXCL10, and XCL2 specifically induced M1 macrophage chemotaxis, whereas CCL7 induced chemotaxis of both M1 and M2 macrophages. Whereas the differential effects of these chemokines on M1/M2 macrophage chemotaxis could be attributable to the predominant expression of their cognate receptors on the macrophage subsets, CCR7, the receptor for CCL19/CCL21, appeared to be an exception. Immunoblot analysis indicated an equivalent level of CCR7 in the whole cell lysate of M1 and M2 macrophages, but CCL19 and CCL21 only induced M1 macrophage chemotaxis. Both immunoblot and confocal microscopy analyses demonstrated that CCR7 was predominantly expressed on the cell surface of M1 but in the cytosol of M2 macrophages before ligand stimulation. As a result, CCL19 or CCL21 induced activation of both MEK1-ERK1/2 and PI3K-AKT cascades in M1 but not in M2 macrophages. Intriguingly, CCL19/CCL21-mediated M1 macrophage chemotaxis was blocked by specific inhibition of PI3K rather than MEK1. Together, these findings suggest that recruitment of M1 and M2 macrophages is fine tuned by different chemokines with the involvement of specific signaling pathways.


Asunto(s)
Quimiocinas/inmunología , Quimiotaxis de Leucocito/inmunología , Macrófagos/inmunología , Western Blotting , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Inflamación/inmunología , Microscopía Confocal , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/inmunología
17.
J Alzheimers Dis ; 48(1): 89-104, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26401931

RESUMEN

Truncation of tau protein is considered an early event in Alzheimer's disease (AD) and is believed to play a major pathogenic role in sporadic AD. However, causative factors that trigger tau truncation in AD remain poorly understood. In the present study, we demonstrate that CXCL1 (C-X-C motif ligand 1), a specific ligand for the chemokine receptor CXCR2, induced cleavage of tau at ASP421 in a caspase-3-dependent manner in long-term but not short-term cultured neurons. The cleaved tau formed varicosities or bead-like structures along the neurites, an abnormal distribution of tau induced by CXCL1 that has not been observed previously. CXCL1-induced activation of GSK3ß and the subsequent phosphorylation of tau preceded and were required for caspase-3 activation and tau cleavage. Moreover, intrahippocampal microinjection of lentiviral CXCL1 induced tau cleavage in hippocampal neurons in aged (15-18 months of age) but not adult mice (5-10 months of age). Our data highlight a new role of CXCR2 in tau cleavage and suggest that targeting CXCR2 may offer therapeutic benefits to patients with AD and potentially other tauopathies.


Asunto(s)
Envejecimiento , Caspasa 3/metabolismo , Quimiocina CXCL1/farmacología , Hipocampo/citología , Neuronas/efectos de los fármacos , Proteínas tau/metabolismo , Animales , Células Cultivadas , Quimiocina CXCL1/sangre , Quimiocina CXCL1/líquido cefalorraquídeo , Quimiocina CXCL1/genética , Embrión de Mamíferos , Femenino , Ratones , Ratones Endogámicos C57BL , Microinyecciones , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Neuronas/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Transfección , Proteínas tau/genética
18.
Novartis Found Symp ; 256: 74-89; discussion 89-91, 106-11, 266-9, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15027484

RESUMEN

Cells that display chemokine receptors are capable of responding to a gradient of chemokine with a motility response that can translate into a chemotactic response. This continuous response to the chemokine sometimes requires that the chemokine receptor be internalized and recycled back to the membrane. We have shown that ligand activation of the CXC chemokine receptor, CXCR2, results in movement of the receptor into clathrin coated pits, followed by movement into the early endosome, the sorting endosome, then on to the recycling endosome prior to trafficking back into the plasma membrane compartment. Prolonged exposure to saturating concentrations of the ligand results in movement of a large percentage of the receptor into the late endosome and on to the lysosome for degradation. Mutation of the receptor in a manner which impairs receptor internalization by altering the binding of adaptor proteins AP-2 or beta arrestin to CXCR2, results in a marked reduction in the chemotactic response. Chemokine receptors also activate multiple intracellular signals that lead to the activation of the transcription factor, nuclear factor kappa beta (NF-kappaB). Transformation is often associated with a constitutive activation of NF-kappaB, leading to endogenous expression of chemokines and their receptors. This creates an autocrine loop with NF-kappaB in the activated state, and altered cxpression of factors that promote tumour angiogenesis and escape from apoptosis. We have shown that the constitutive activation of NF-kappaB in human melanoma tumours is accompanied by constitutive activation of the NF-kappaB inducing kinase (NIK) as well as the constitutive activation of AKT. As these factors that modulate the expression of anti-apoptotic factors work together, the tumour cells exhibit enhanced survival and growth. This never ending cycle of activation of NF-kappaB, leading to enhanced production of chemokines, enhanced activation of AKT and NF-kappaB, and enhanced transcription of inhibitors of apoptosis and chemokines, is one that has been used to foster the growth of the tumour to the disadvantage of the host. Thus we propose that blocking CXCR2 and/or NF-kappaB offers potential therapeutic promise for a number of chronic inflammatory conditions and cancers, including malignant melanoma.


Asunto(s)
Quimiocinas/metabolismo , Melanoma/metabolismo , Receptores de Quimiocina/metabolismo , Animales , Apoptosis , Transformación Celular Neoplásica , Factores Quimiotácticos/metabolismo , Sustancias de Crecimiento , Humanos , Melanoma/patología , FN-kappa B/metabolismo , Transducción de Señal
19.
J Med Chem ; 57(20): 8378-97, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25254640

RESUMEN

The G protein-coupled chemokine receptors CXCR1 and CXCR2 play key roles in inflammatory diseases and carcinogenesis. In inflammation, they activate and recruit polymorphonuclear cells (PMNs) through binding of the chemokines CXCL1 (CXCR1) and CXCL8 (CXCR1 and CXCR2). Structure-activity studies that examined the effect of a novel series of S-substituted 6-mercapto-N-phenyl-nicotinamides on CXCL1-stimulated Ca(2+) flux in whole human PMNs led to the discovery of 2-[5-(4-fluorophenylcarbamoyl)pyridin-2-ylsulfanylmethyl]phenylboronic acid (SX-517), a potent noncompetitive boronic acid CXCR1/2 antagonist. SX-517 inhibited CXCL1-induced Ca(2+) flux (IC50 = 38 nM) in human PMNs but had no effect on the Ca(2+) flux induced by C5a, fMLF, or PAF. In recombinant HEK293 cells that stably expressed CXCR2, SX-517 antagonized CXCL8-induced [(35)S]GTPγS binding (IC50 = 60 nM) and ERK1/2 phosphorylation. Inhibition was noncompetitive, with SX-517 unable to compete the binding of [(125)I]-CXCL8 to CXCR2 membranes. SX-517 (0.2 mg/kg iv) significantly inhibited inflammation in an in vivo murine model. SX-517 is the first reported boronic acid chemokine antagonist and represents a novel pharmacophore for CXCR1/2 antagonism.


Asunto(s)
Ácidos Borónicos/química , Niacinamida/farmacología , Receptores de Interleucina-8A/antagonistas & inhibidores , Receptores de Interleucina-8B/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Unión Competitiva , Ácidos Borónicos/farmacología , Quimiocina CXCL1/antagonistas & inhibidores , Técnicas Químicas Combinatorias , Células HEK293/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Interleucina-8/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos , Neutrófilos/efectos de los fármacos , Niacinamida/química , Fosforilación , Receptores de Interleucina-8B/metabolismo , Relación Estructura-Actividad
20.
J Biol Chem ; 284(9): 5742-52, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19106094

RESUMEN

The chemokine receptor CXCR4 plays important roles in the immune and nervous systems. Abnormal expression of CXCR4 contributes to cancer and inflammatory and neurodegenerative disorders. Although ligand-dependent CXCR4 ubiquitination is known to accelerate CXCR4 degradation, little is known about counter mechanisms for receptor deubiquitination. CXCL12, a CXCR4 agonist, induces a time-dependent association of USP14 with CXCR4, or its C terminus, that is not mimicked by USP2A, USP4, or USP7, other members of the deubiquitination catalytic family. Co-localization of CXCR4 and USP14 also is time-dependent following CXCL12 stimulation. The physical interaction of CXCR4 and USP14 is paralleled by USP14-catalyzed deubiquitination of the receptor; knockdown of endogenous USP14 by RNA interference (RNAi) blocks CXCR4 deubiquitination, whereas overexpression of USP14 promotes CXCR4 deubiquitination. We also observed that ubiquitination of CXCR4 facilitated receptor degradation, whereas overexpression of USP14 or RNAi-induced knockdown of USP14 blocked CXCL12-mediated CXCR4 degradation. Most interestingly, CXCR4-mediated chemotactic cell migration was blocked by either overexpression or RNAi-mediated knockdown of USP14, implying that a CXCR4-ubiquitin cycle on the receptor, rather than a particular ubiquitinated state of the receptor, is critical for the ligand gradient sensing and directed motility required for chemokine-mediated chemotaxis. Our observation that a mutant of CXCR4, HA-3K/R CXCR4, which cannot be ubiquitinated and does not mediate a chemotactic response to CXCL12, indicates the importance of this covalent modification not only in marking receptors for degradation but also for permitting CXCR4-mediated signaling. Finally, the indistinguishable activation of ERK by wild typeor 3K/R-CXCR4 suggests that chemotaxis in response to CXCL12 may be independent of the ERK cascade.


Asunto(s)
Quimiocina CXCL12/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Receptores CXCR4/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Western Blotting , Movimiento Celular , Células Cultivadas , Quimiocina CXCL12/genética , Quimiotaxis , Células HeLa , Humanos , Inmunoprecipitación , Riñón/citología , Riñón/metabolismo , Fosforilación , Receptores CXCR4/genética , Ubiquitina Tiolesterasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA