Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2310689, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421135

RESUMEN

Improving the interconnected structure and bioregulatory function of natural chitosan is beneficial for optimizing its performance in bone regeneration. Here, a facile immunoregulatory constructional design is proposed for developing instructive chitosan by directional freezing and alkaline salting out. The molecular dynamics simulation confirmed the assembly kinetics and structural features of various polyphenols and chitosan molecules. Along with the in vitro anti-inflammatory, antioxidative, promoting bone mesenchymal stem cell (BMSC) adhesion and proliferation performance, proanthocyanidin optimizing chitosan (ChiO) scaffold presented an optimal immunoregulatory structure with the directional microchannel. Transcriptome analysis in vitro further revealed the cytoskeleton- and immune-regulation effect of ChiO are the key mechanism of action on BMSC. The rabbit cranial defect model (Φ = 10 mm) after 12 weeks of implantation confirmed the significantly enhanced bone reconstitution. This facile immunoregulatory directional microchannel design provides effective guidance for developing inducible chitosan scaffolds.

2.
Biomacromolecules ; 25(3): 1871-1886, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38324764

RESUMEN

Severe bone defects resulting from trauma and diseases remain a persistent clinical challenge. In this study, a hierarchical biomimetic microporous hydrogel composite scaffold was constructed by mimicking the hierarchical structure of bone. Initially, gelatin methacrylamide (GelMA) and methacrylic anhydride silk fibroin (SilMA) were synthesized, and GelMA/SilMA inks with suitable rheological and mechanical properties were prepared. Biomimetic micropores were then generated by using an aqueous two-phase emulsification method. Subsequently, biomimetic microporous GelMA/SilMA was mixed with hydroxyapatite (HAp) to prepare biomimetic microporous GelMA/SilMA/HAp ink. Hierarchical biomimetic microporous GelMA/SilMA/HAp (M-GSH) scaffolds were then fabricated through digital light processing (DLP) 3D printing. Finally, in vitro experiments were conducted to investigate cell adhesion, proliferation, and inward migration as well as osteogenic differentiation and vascular regeneration effects. In vivo experiments indicated that the biomimetic microporous scaffold significantly promoted tissue integration and bone regeneration after 12 weeks of implantation, achieving 42.39% bone volume fraction regeneration. In summary, this hierarchical biomimetic microporous scaffold provides a promising strategy for the repair and treatment of bone defects.


Asunto(s)
Acrilamidas , Durapatita , Andamios del Tejido , Durapatita/química , Andamios del Tejido/química , Gelatina/química , Osteogénesis , Biomimética , Regeneración Ósea , Impresión Tridimensional , Ingeniería de Tejidos
3.
Inorg Chem ; 63(1): 689-705, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38146716

RESUMEN

Biomolecules play a vital role in the regulation of biomineralization. However, the characteristics of practical nucleation domains are still sketchy. Herein, the effects of the representative biomolecular sequence and conformations on calcium phosphate (Ca-P) nucleation and mineralization are investigated. The results of computer simulations and experiments prove that the line in the arrangement of dual acidic/essential amino acids with a single interval (Bc (Basic) -N (Neutral) -Bc-N-Ac (Acidic)- NN-Ac-N) is most conducive to the nucleation. 2α-helix conformation can best induce Ca-P ion cluster formation and nucleation. "Ac- × × × -Bc" sequences with α-helix are found to be the features of efficient nucleation domains, in which process, molecular recognition plays a non-negligible role. It further indicates that the sequence determines the potential of nucleation/mineralization of biomolecules, and conformation determines the ability of that during functional execution. The findings will guide the synthesis of biomimetic mineralized materials with improved performance for bone repair.


Asunto(s)
Biomineralización , Fosfatos de Calcio , Fosfatos de Calcio/química , Conformación Molecular
4.
Small ; 19(45): e2303414, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37431206

RESUMEN

Collagen-based hydrogels have a significant impact on wound healing, but they suffer from structural instability and bacterial invasion in infected wounds. Here, electrospun nanofibers of esterified hyaluronan (HA-Bn/T) are developed to immobilize the hydrophobic antibacterial drug tetracycline by π-π stacking interaction. Dopamine-modified hyaluronan and HA-Bn/T are employed simultaneously to stabilize the structure of collagen-based hydrogel by chemically interweaving the collagen fibril network and decreasing the rate of collagen degradation. This renders it injectable for in situ gelation, with suitable skin adhesion properties and long-lasting drug release capability. This hybridized interwoven hydrogel promotes the proliferation and migration of L929 cells and vascularization in vitro. It presents satisfactory antibacterial ability against Staphylococcus aureus and Escherichia coli. The structure also retains the functional protein environment provided by collagen fiber, inhibits the bacterial environment of infected wounds, and modulates local inflammation, resulting in neovascularization, collagen deposition, and partial follicular regeneration. This strategy offers a new solution for infected wound healing.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Hidrogeles/química , Ácido Hialurónico/química , Adhesivos , Cicatrización de Heridas , Colágeno/farmacología , Tetraciclina , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Escherichia coli
5.
Small ; 19(40): e2302152, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37282789

RESUMEN

Cell migration is an essential bioactive ceramics property and critical for bone induction, clinical application, and mechanism research. Standardized cell migration detection methods have many limitations, including a lack of dynamic fluid circulation and the inability to simulate cell behavior in vivo. Microfluidic chip technology, which mimics the human microenvironment and provides controlled dynamic fluid cycling, has the potential to solve these questions and generate reliable models of cell migration in vitro. In this study, a microfluidic chip is reconstructed to integrate the bioactive ceramic into the microfluidic chip structure to constitute a ceramic microbridge microfluidic chip system. Migration differences in the chip system are measured. By combining conventional detection methods with new biotechnology to analyze the causes of cell migration differences, it is found that the concentration gradients of ions and proteins adsorbed on the microbridge materials are directly related to the occurrence of cell migration behavior, which is consistent with previous reports and demonstrates the effectiveness of the microfluidic chip model. This model provides in vivo environment simulation and controllability of input and output conditions superior to standardized cell migration detection methods. The microfluidic chip system provides a new approach to studying and evaluating bioactive ceramics.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Humanos , Simulación por Computador , Movimiento Celular , Biotecnología
6.
Small ; 19(19): e2206960, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36772909

RESUMEN

Integrating a biomimetic extracellular matrix to improve the microenvironment of 3D printing scaffolds is an emerging strategy for bone substitute design. Here, a "soft-hard" bone implant (BM-g-DPCL) consisting of a bioactive matrix chemically integrated on a polydopamine (PDA)-coated porous gradient scaffold by polyphenol groups is constructed. The PDA-coated "hard" scaffolds promoted Ca2+ chelation and mineral deposition; the "soft" bioactive matrix is beneficial to the migration, proliferation, and osteogenic differentiation of stem cells in vitro, accelerated endogenous stem cell recruitment, and initiated rapid angiogenesis in vivo. The results of the rabbit cranial defect model (Φ = 10 mm) confirmed that BM-g-DPCL promoted the integration between bone tissue and implant and induced the deposition of bone matrix. Proteomics confirmed that cytokine adhesion, biomineralization, rapid vascularization, and extracellular matrix formation are major factors that accelerate bone defect healing. This strategy of highly chemically bonded soft-hard components guided the construction of the bioactive regenerative scaffold.


Asunto(s)
Osteogénesis , Andamios del Tejido , Animales , Conejos , Porosidad , Biomimética , Remodelación Ósea
7.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108186

RESUMEN

Lesioned tissue requires synchronous control of disease and regeneration progression after surgery. It is necessary to develop therapeutic and regenerative scaffolds. Here, hyaluronic acid (HA) was esterified with benzyl groups to prepare hyaluronic acid derivative (HA-Bn) nanofibers via electrospinning. Electrospun membranes with average fiber diameters of 407.64 ± 124.8 nm (H400), 642.3 ± 228.76 nm (H600), and 841.09 ± 236.86 nm (H800) were obtained by adjusting the spinning parameters. These fibrous membranes had good biocompatibility, among which the H400 group could promote the proliferation and spread of L929 cells. Using the postoperative treatment of malignant skin melanoma as an example, the anticancer drug doxorubicin (DOX) was encapsulated in nanofibers via hybrid electrospinning. The UV spectroscopy of DOX-loaded nanofibers (HA-DOX) revealed that DOX was successfully encapsulated, and there was a π-π interaction between aromatic DOX and HA-Bn. The drug release profile confirmed the sustained release of about 90%, achieved within 7 days. In vitro cell experiments proved that the HA-DOX nanofiber had a considerable inhibitory effect on B16F10 cells. Therefore, the HA-Bn electrospun membrane could facilitate the potential regeneration of injured skin tissues and be incorporated with drugs to achieve therapeutic effects, offering a powerful approach to developing therapeutic and regenerative biomaterial.


Asunto(s)
Antineoplásicos , Nanofibras , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Ácido Hialurónico/química , Nanofibras/química , Doxorrubicina/farmacología , Doxorrubicina/química
8.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077353

RESUMEN

Natural polymer hydrogels have good mechanical properties and biocompatibility. This study designed hydroxyapatite-enhanced photo-oxidized double-crosslinked hydrogels. Hyaluronic acid (HA) and gelatin (Gel) were modified with methacrylate anhydride. The catechin group was further introduced into the HA chain inspired by the adhesion chemistry of marine mussels. Hence, the double-crosslinked hydrogel (HG) was formed by the photo-crosslinking of double bonds and the oxidative-crosslinking of catechins. Moreover, hydroxyapatite was introduced into HG to form hydroxyapatite-enhanced hydrogels (HGH). The results indicate that, with an increase in crosslinking network density, the stiffness of hydrogels became higher; these hydrogels have more of a compact pore structure, their anti-degradation property is improved, and swelling property is reduced. The introduction of hydroxyapatite greatly improved the mechanical properties of hydrogels, but there is no change in the stability and crosslinking network structure of hydrogels. These inorganic phase-enhanced hydrogels were expected to be applied to tissue engineering scaffolds.


Asunto(s)
Durapatita , Hidrogeles , Gelatina/química , Ácido Hialurónico/química , Hidrogeles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(3): 380-386, 2021 May.
Artículo en Zh | MEDLINE | ID: mdl-34018354

RESUMEN

In regenerative medicine, stem cell therapy is an effective strategy for tissue regeneration and has a positive therapeutic effect on the regeneration and repair of defective tissues. In recent years, a series of studies have shown that the positive effects of stem cell therapy are mediated by exosomes released by the paracrine action of mesenchymal stem cells. Researchers have thus proposed a novel treatment strategy to use stem-cell-derived exosomes alone for tissue regeneration and repair, and affirmed through studies that the effects achieved were comparable to those of stem-cell-based therapies. Therefore, as a promising treatment strategy, exosome-based tissue regeneration treatment measures have been extensively studied. In this review, we discussed the latest knowledge of exosomes and the research progress in the regeneration and repair of related connective tissues, including the regeneration of bones, cartilage, skin, spinal cord and tendons, and briefly discussed the corresponding mechanisms. In addition, the challenges and prospects of tissue regeneration and repair based on mesenchymal stem cell exosomes were discussed.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Medicina Regenerativa , Tendones , Cicatrización de Heridas
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(4): 548-554, 2021 Jul.
Artículo en Zh | MEDLINE | ID: mdl-34323029

RESUMEN

It is difficult for the articular cartilage to self-heal any damage it may incur due to its lack of nerves and blood vessels. Development in stem cell technology provides new prospects for articular cartilage regeneration. Currently, stem cells from different sources and their diverse applications have demonstrated different degrees of therapeutic effect and potential in articular cartilage repair. However, stem cells are highly sensitive to their microenvironment. Therefore, more and more researchers are focusing their attention on regulating stem cells and thus accelerating cartilage regeneration through the biomimetic microenvironment constructed by biologically functional scaffolds. We reviewed in this paper the sources of the stem cells used for cartilage repair, the application method of these stem cells, as well as the therapeutic effect, mechanism and limitations in the application of stem cells synergizing with the biomimetic microenvironment in promoting articular cartilage repair and regeneration. We hoped to provide suggestions for practical clinical research in the design and improvement of biofunctional cartilage repair scaffolds that synergize with stem cells.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Biomimética , Células Madre , Ingeniería de Tejidos , Andamios del Tejido
11.
Int J Legal Med ; 133(1): 91-93, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29779151

RESUMEN

The X chromosome has a special mode of inheritance, and is thus a rich resource for population studies. In this study, the allele frequencies and forensic statistics of the 19 X chromosomal short tandem repeat loci were evaluated in 500 Uyghur individuals from Aksu Prefecture in northwest China. We further aimed to study whether the Uyghur populations located in various regions of Xinjiang share similar allele and haplotype frequency distributions, as they have experienced genetic exchanges. Population comparisons, PCA and MDS were performed for the Uyghurs and 27 populations and the results indicate that the Uyghur minority in Aksu has a relatively close phylogenetic relationship with East Asians, especially the Kazakh minority.


Asunto(s)
Cromosomas Humanos X , Etnicidad/genética , Genética de Población , Repeticiones de Microsatélite , Filogenia , China , Dermatoglifia del ADN , Femenino , Frecuencia de los Genes , Sitios Genéticos , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Análisis de Componente Principal
12.
J Mater Sci Mater Med ; 28(10): 150, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28831637

RESUMEN

As the seed cells, the immune properties of the mesenchymal stem cells are important for the tissue engineering restoring effect. But the in vivo research model is lacking. In the study, based on a dialyzer pocket model, changes in immunological properties and the differentiation of seeded mesenchymal stem cells (MSCs) in collagen hydrogel were studied in muscle and articular cavity implantation, respectively. The results showed that collagen hydrogel can induce MSCs to form cartilage tissue, followed by alteration of immunological properties. In muscle implantation, relatively low expression of major histocompatibility complex (MHC) molecules and low level of one-way mixed lymphocyte reactions (MLR) on the seeded MSCs were observed, but only a little cartilage tissue formed. In articular cavity implantation, more cartilage tissue formed, but higher MHC expressions and MLR level were found. Results indicated that the immunomodulation and the cartilage formation of the seeded MSCs will be impacted by the scaffold and the environment of the in vivo implanted site. The dialyzer pocket model can be used for the in vivo research for the MSC-based strategy of the tissue engineering, especially for the optimization of the immunomodulation.


Asunto(s)
Células de la Médula Ósea , Células Madre Mesenquimatosas , Ingeniería de Tejidos , Animales , Animales Recién Nacidos , Colágeno , Ensayo de Materiales , Conejos , Técnicas de Cultivo de Tejidos , Andamios del Tejido
13.
Int J Mol Sci ; 19(1)2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29271916

RESUMEN

Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed.


Asunto(s)
Materiales Biocompatibles/química , Ingeniería Biomédica , Metales/química , Prótesis e Implantes , Implantes Absorbibles , Animales , Materiales Biocompatibles/metabolismo , Fenómenos Biomecánicos , Ingeniería Biomédica/métodos , Humanos , Metales/metabolismo , Diseño de Prótesis , Stents
14.
J Mater Sci Mater Med ; 27(1): 5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26610928

RESUMEN

The influences of steam sterilization on the physicochemical properties of calcium phosphate (Ca-P) porous bioceramics, including ß-tricalcium phosphate (ß-TCP), biphasic calcium phosphate (BCP) and hydroxyapatite (HA) are investigated. After being steam sterilized in an autoclave (121 °C for 40 min), the porous bioceramics are dried and characterized. The steam sterilization has no obvious effects on the phase composition, thermal stability, pH value and dissolubility of ß-TCP porous bioceramic, but changes its morphology and mechanical strength. Meanwhile, the steam sterilization leads to the significant changes of the morphology, phase composition, pH value and dissolubility of BCP porous bioceramic. The increase of dissolubility and mechanical strength, the decrease of pH value of the immersed solution and partial oriented growth of crystals are also observed in HA porous bioceramic after steam sterilization. These results indicate that the steam sterilization can result in different influences on the physicochemical properties of ß-TCP, BCP and HA porous bioceramics, thus the application of the steam sterilization on the three kinds of Ca-P porous bioceramics should be considered carefully based on the above changed properties.


Asunto(s)
Materiales Biocompatibles , Fosfatos de Calcio/química , Cerámica , Vapor , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Solubilidad
15.
ACS Appl Mater Interfaces ; 16(4): 4395-4407, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38247262

RESUMEN

Sharply rising oxidative stress and ineffectual angiogenesis have imposed restrictions on diabetic wound healing. Here, a photothermal-responsive nanodelivery platform (HHC) was prepared by peroxidase (CAT)-loaded hollow copper sulfide dispersed in photocurable methacrylamide hyaluronan. The HHC could scavenge reactive oxygen species (ROS) and promote angiogenesis by photothermally driven CAT and Cu2+ release. Under near-infrared light irradiation, the HHC presented safe photothermal performance (<43 °C), efficient bacteriostatic ability against E. coli and S. aureus. It could rapidly release CAT into the external environment for decomposing H2O2 and oxygen generation to alleviate oxidative stress while promoting fibroblast migration and VEGF protein expression of endothelial cells by reducing intracellular ROS levels. The nanodelivery platform presented satisfactory therapeutic effects on murine diabetic wound healing by modulating tissue inflammation, promoting collagen deposition and increasing vascularization in the neodermis. This HHC provided a viable strategy for diabetic wound dressing design.


Asunto(s)
Cobre , Diabetes Mellitus , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Cobre/uso terapéutico , Células Endoteliales/metabolismo , Staphylococcus aureus/metabolismo , Escherichia coli/metabolismo , Angiogénesis , Peróxido de Hidrógeno , Sulfuros/farmacología , Antibacterianos/uso terapéutico , Hidrogeles
16.
Adv Healthc Mater ; 13(12): e2303600, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38303119

RESUMEN

Bone regenerative scaffolds with a bionic natural bone hierarchical porous structure provide a suitable microenvironment for cell migration and proliferation. Here, a bionic scaffold (DP-PLGA/HAp) with directional microchannels is prepared by combining 3D printing and directional freezing technology. The 3D printed framework provides structural support for new bone tissue growth, while the directional pore embedded in the scaffolds provides an express lane for cell migration and nutrition transport, facilitating cell growth and differentiation. The hierarchical porous scaffolds achieve rapid infiltration and adhesion of bone marrow mesenchymal stem cells (BMSCs) and improve the expression of osteogenesis-related genes. The rabbit cranial defect experiment presents significant new bone formation, demonstrating that DP-PLGA/HAp offers an effective means to guide cranial bone regeneration. The combination of 3D printing and directional freezing technology might be a promising strategy for developing bone regenerative biomaterials.


Asunto(s)
Regeneración Ósea , Células Madre Mesenquimatosas , Osteogénesis , Impresión Tridimensional , Andamios del Tejido , Regeneración Ósea/fisiología , Animales , Conejos , Andamios del Tejido/química , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Porosidad , Diferenciación Celular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ingeniería de Tejidos/métodos , Proliferación Celular , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Durapatita/química
17.
J Mater Chem B ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904349

RESUMEN

The management of chronic infected wounds poses significant challenges due to frequent bacterial infections, high concentrations of reactive oxygen species, abnormal immune regulation, and impaired angiogenesis. This study introduces a novel, microenvironment-responsive, dual dynamic, and covalently bonded hydrogel, termed OHA-P-TA/G/Mg2+. It is derived from the reaction of tannic acid (TA) with phenylboronic acids (PBA), which are grafted onto oxidized hyaluronic acid (OHA-P-TA), combined with GelMA (G) via a Schiff base and chemical bonds, along with the incorporation of Mg2+. This hydrogel exhibits pH and ROS dual-responsiveness, demonstrating effective antibacterial capacity, antioxidant ability, and the anti-inflammatory ability under distinct acidic and oxidative microenvironments. Furthermore, the release of Mg2+ from the TA-Mg2+ network (TA@Mg2+) promotes the transformation of pro-inflammatory M1 phenotype macrophages to anti-inflammatory M2 phenotype, showing a microenvironment-responsive response. Finally, in vivo results indicate that the OHA-P-TA/G/Mg2+ hydrogel enhances epithelial regeneration, collagen deposition, and neovascularization, showing great potential as an effective dressing for infected wound repair.

18.
ACS Nano ; 18(20): 12870-12884, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727063

RESUMEN

Epirubicin (EPI) alone can trigger mildly protective autophagy in residual tumor cells, resulting in an immunosuppressive microenvironment. This accelerates the recurrence of residual tumors and leads to antiprogrammed death ligand 1 (anti-PD-1)/PD-L1 therapy resistance, posing a significant clinical challenge in tumor immunotherapy. The combination of checkpoint inhibitors targeting the PD-1/PD-L1 pathway and amplifying autophagy presents an innovative approach to tumor treatment, which can prevent tumor immune escape and enhance therapeutic recognition. Herein, we aimed to synthesize a redox-triggered autophagy-induced nanoplatform with SA&EA-induced PD-L1 inhibition. The hyaluronic acid (HA) skeleton and arginine segment promoted active nanoplatform targeting, cell uptake, and penetration. The PLGLAG peptide was cleaved by overexpressing matrix metalloproteinase-2 (MMP-2) in the tumor microenvironment, and the PD-L1 inhibitor D-PPA was released to inhibit tumor immune escape. The intense autophagy inducers, STF-62247 and EPI, were released owing to the cleavage of disulfide bonds influenced by the high glutathione (GSH) concentration in tumor cells. The combination of EPI and STF induced apoptosis and autophagic cell death, effectively eliminating a majority of tumor cells. This indicated that the SA&EA nanoplatform has better therapeutic efficacy than the single STF@AHMPP and EPI@AHMPTP groups. This research provided a way to set up a redox-triggered autophagy-induced nanoplatform with PD-L1 inhibition to enhance chemo-immunotherapy.


Asunto(s)
Autofagia , Antígeno B7-H1 , Inmunoterapia , Nanopartículas , Oxidación-Reducción , Autofagia/efectos de los fármacos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Animales , Humanos , Ratones , Nanopartículas/química , Microambiente Tumoral/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ensayos de Selección de Medicamentos Antitumorales
19.
Artículo en Inglés | MEDLINE | ID: mdl-38953613

RESUMEN

Osteoblasts and osteoclasts are two of the most important types of cells in bone repair, and their bone-forming and bone-resorbing activities influence the process of bone repair. In this study, we proposed a physicochemical bidirectional regulation strategy via ration by physically utilizing hydroxyapatite nanopatterning to recruit and induce MSCs osteogenic differentiation and by chemically inhibiting osteolysis activity through the loaded zoledronate. The nanorod-like hydroxyapatite coating was fabricated via a modified hydrothermal process while the zoledronic acid was loaded through the chelation within the calcium ions. The fabrication of a hydroxyapatite/zoledronic acid composite biomaterial. This biomaterial promotes bone tissue regeneration by physically utilizing hydroxyapatite nanopatterning to recruit and induce MSCs osteogenic differentiation and by chemically inhibiting osteolysis activity through the loaded zoledronate. The nanorod-like hydroxyapatite coating was fabricated via a modified hydrothermal process while the zoledronic acid was loaded through the chelation within the calcium ions. The in vitro results tested on MSCs and RAW 246.7 indicated that the hydroxyapatite enhanced cells' physical sensing system, therefore enhancing the osteogenesis. At the same time the zoledronic acid inhibited osteolysis by downregulating the RANK-related genes. This research provides a promising strategy for enhancing bone regeneration and contributes to the field of orthopedic implants.

20.
Acta Biomater ; 179: 95-105, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513723

RESUMEN

The osteoarthritic (OA) environment within articular cartilage poses significant challenges, resulting in chondrocyte dysfunction and cartilage matrix degradation. While intra-articular injections of anti-inflammatory drugs, biomaterials, or bioactive agents have demonstrated some effectiveness, they primarily provide temporary relief from OA pain without arresting OA progression. This study presents an injectable cartilage-coating composite, comprising hyaluronic acid and decellularized cartilage matrix integrated with specific linker polymers. It enhances the material retention, protection, and lubrication on the cartilage surface, thereby providing an effective physical barrier against inflammatory factors and reducing the friction and shear force associated with OA joint movement. Moreover, the composite gradually releases nutrients, nourishing OA chondrocytes, aiding in the recovery of cellular function, promoting cartilage-specific matrix production, and mitigating OA progression in a rat model. Overall, this injectable cartilage-coating composite offers promising potential as an effective cell-free treatment for OA. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) in the articular cartilage leads to chondrocyte dysfunction and cartilage matrix degradation. This study introduces an intra-articular injectable composite material (HDC), composed of decellularized cartilage matrix (dECMs), hyaluronan (HA), and specially designed linker polymers to provide an effective cell-free OA treatment. The linker polymers bind HA and dECMs to form an integrated HDC structure with an enhanced degradation rate, potentially reducing the need for frequent injections and associated trauma. They also enable HDC to specifically coat the cartilage surface, forming a protective and lubricating layer that enhances long-term retention, acts as a barrier against inflammatory factors, and reduces joint movement friction. Furthermore, HDC nourishes OA chondrocytes through gradual nutrient release, aiding cellular function recovery, promoting cartilage-specific matrix production, and mitigating OA progression.


Asunto(s)
Cartílago Articular , Condrocitos , Osteoartritis , Ratas Sprague-Dawley , Animales , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/patología , Osteoartritis/patología , Osteoartritis/tratamiento farmacológico , Osteoartritis/terapia , Cartílago Articular/patología , Cartílago Articular/efectos de los fármacos , Ratas , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Lubrificación , Masculino , Bovinos , Inyecciones Intraarticulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA