Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Small ; 13(19)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28306204

RESUMEN

The deterioration of water resources due to oil pollution, arising from oil spills, industrial oily wastewater discharge, etc., urgently requires the development of novel functional materials for highly efficient water remediation. Recently, superhydrophilic and underwater superoleophobic materials have drawn significant attention due to their low oil adhesion and selective oil/water separation. However, it is still a challenge to prepare low-cost, environmentally friendly, and multifunctional materials with superhydrophilicity and underwater superoleophobicity, which can be stably used for oil/water separation under harsh working conditions. Here, the preparation of nanofiber-based meshes derived from waste glass through a green and sustainable route is demonstrated. The resulting meshes exhibit excellent performance in the selective separation of a wide range of oil/water mixtures. Importantly, these meshes can also maintain the superwetting property and high oil/water separation efficiency under various harsh conditions. Furthermore, the as-prepared mesh can remove water-soluble contaminants simultaneously during the oil/water separation process, leading to multifunctional water purification. The low-cost and environmentally friendly fabrication, harsh-environment resistance, and multifunctional characteristics make these nanofiber-based meshes promising toward oil/water separation under practical conditions.

2.
Small ; 12(16): 2186-202, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-27000640

RESUMEN

The increasing number of oil spill accidents have a catastrophic impact on our aquatic environment. Recently, special wettable materials used for the oil/water separation have received significant research attention. Due to their opposing affinities towards water and oil, i.e., hydrophobic and oleophilic, or hydrophilic and oleophobic, such materials can be used to remove only one phase from the oil/water mixture, and simultaneously repel the other phase, thus achieving selective oil/water separation. Moreover, the synergistic effect between the surface chemistry and surface architecture can further promote the superwetting behavior, resulting in the improved separation efficiency. Here, recently developed materials with special wettability for selective oil/water separation are summarized and discussed. These materials can be categorized based on their oil/water separating mechanisms, i.e., filtration and absorption. In each section, representative studies will be highlighted, with emphasis on the materials wetting properties and innovative aspects. Finally, challenges and future research directions in this emerging and promising research field will be briefly described.

3.
Environ Sci Technol ; 50(11): 6044-52, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27161935

RESUMEN

Produced and process water (PPW) from oil and gas operations, specifically in Qatar, are disposed of by deep well injection in onshore facilities. Disposing large volumes of PPW may affect deep well formation sustainability highlighting the need for effective PPW management. Forward osmosis (FO) was applied as an "osmotic concentration" process to reduce PPW injection volumes by 50% using brines and seawater as draw solutions (DS). The energy intensive step of restoring the salinity of the DS was eliminated; the diluted DS would be simply discharged to the ocean. Both hollow fiber and flat sheet FO membranes were tested and the former exhibited better flux and rejection; they are the focus of this study. Optimization experiments, conducted using Box-Behnken statistical design, confirmed that temperature and DS concentration had a substantial effect on performance. To validate the concept, a long-term experiment, under optimized conditions, was conducted with PPW as feed and brine from thermal desalination plant as DS which yielded an average flux of 24 L/m(2)h. The results confirmed that low-energy osmotic concentration FO has the potential for full-scale implementation to reduce PPW injection volumes. Pilot testing opportunities are being evaluated to demonstrate the effectiveness of this technology under field conditions.


Asunto(s)
Purificación del Agua , Agua , Membranas Artificiales , Ósmosis , Soluciones
4.
Environ Sci Technol ; 50(13): 6930-9, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27269635

RESUMEN

The development of novel tools for studying the fouling behavior during membrane processes is critical. This work explored optical coherence tomography (OCT) to quantitatively interpret the formation of a cake layer during a membrane process; the quantitative analysis was based on a novel image processing method that was able to precisely resolve the 3D structure of the cake layer on a micrometer scale. Fouling experiments were carried out with foulants having different physicochemical characteristics (silica nanoparticles and bentonite particles). The cake layers formed at a series of times were digitalized using the OCT-based characterization. The specific deposit (cake volume/membrane surface area) and surface coverage were evaluated as a function of time, which for the first time provided direct experimental evidence for the transition of various fouling mechanisms. Axial stripes were observed in the grayscale plots showing the deposit distribution in the scanned area; this interesting observation was in agreement with the instability analysis that correlated the polarized particle groups with the small disturbances in the boundary layer. This work confirms that the OCT-based characterization is able to provide deep insights into membrane fouling processes and offers a powerful tool for exploring membrane processes with enhanced performance.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Membranas , Nanopartículas , Tomografía de Coherencia Óptica
5.
Appl Environ Microbiol ; 81(7): 2515-24, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25636842

RESUMEN

Biofouling remains a key challenge for membrane-based water treatment systems. This study investigated the dispersal potential of the nitric oxide (NO) donor compound, PROLI NONOate, on single- and mixed-species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis (RO) membranes. The potential of PROLI NONOate to control RO membrane biofouling was also examined. Confocal microscopy revealed that PROLI NONOate exposure induced biofilm dispersal in all but two of the bacteria tested and successfully dispersed mixed-species biofilms. The addition of 40 µM PROLI NONOate at 24-h intervals to a laboratory-scale RO system led to a 92% reduction in the rate of biofouling (pressure rise over a given period) by a bacterial community cultured from an industrial RO membrane. Confocal microscopy and extracellular polymeric substances (EPS) extraction revealed that PROLI NONOate treatment led to a 48% reduction in polysaccharides, a 66% reduction in proteins, and a 29% reduction in microbial cells compared to the untreated control. A reduction in biofilm surface coverage (59% compared to 98%, treated compared to control) and average thickness (20 µm compared to 26 µm, treated compared to control) was also observed. The addition of PROLI NONOate led to a 22% increase in the time required for the RO module to reach its maximum transmembrane pressure (TMP), further indicating that NO treatment delayed fouling. Pyrosequencing analysis revealed that the NO treatment did not significantly alter the microbial community composition of the membrane biofilm. These results present strong evidence for the application of PROLI NONOate for prevention of RO biofouling.


Asunto(s)
Antiinfecciosos/metabolismo , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Membranas/microbiología , Óxido Nítrico/metabolismo , Purificación del Agua/métodos , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Donantes de Óxido Nítrico/administración & dosificación , Prolina/administración & dosificación , Prolina/análogos & derivados
6.
Environ Sci Technol ; 49(4): 2310-8, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25650519

RESUMEN

The authors have recently reported the fabrication of superabsorbent cryogels decorated with silver nanoparticles (PSA/AgNP cryogels) that demonstrate rapid water disinfection. This paper provides a systematic elucidation of the bactericidal mechanisms of AgNPs (silver nanoparticles), both generally and in the specific context of cryogels. Direct contact between the PSA/AgNP cryogel interface and the bacterial cells is required to accomplish disinfection. Specifically, the disinfection efficacy is closely correlated to the cell-bound Ag concentration, which constitutes >90% of the Ag released. Cells exposed to PSA/AgNP cryogels show a significant depletion of intracellular adenosine triphosphate (ATP) content and cell-membrane lesions. A positive ROS (reactive oxygen species) scavenging test confirms the involvement of ROS (·O2(-), H2O2, and ·OH) in the bactericidal mechanism. Furthermore, exposed bacterial cells show an enhanced level of thiobarbituric acid reactive substances, indicating the occurrence of cell-membrane peroxidation mediated by ROS. In addition, this study reveals that both Ag(+) and Ag(0) are involved in the bactericidal mechanism of AgNPs via tests conducted using PSA cryogels with bound Ag(+) ions (or PSA/Ag(+) cryogels without reducing Ag(+) to Ag(0)). Significantly, bacterial cells exposed to PSA/Ag(+) cryogels did not show any cell-membrane damage even though the former had a higher cell-bound Ag concentration than that of the PSA/AgNP cryogels, thus indicating the differential action of Ag(+) and Ag(0).


Asunto(s)
Antibacterianos/química , Criogeles/química , Desinfección/métodos , Nanopartículas del Metal/química , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Peróxido de Hidrógeno/química , Especies Reactivas de Oxígeno , Plata/farmacocinética , Agua/química , Microbiología del Agua , Purificación del Agua/métodos
7.
J Environ Sci (China) ; 29: 115-23, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25766019

RESUMEN

Biofilm formation, one of the primary causes of biofouling, results in reduced membrane flux or increased transmembrane pressure and thus represents a major impediment to the wider implementation of membrane bioreactor (MBR) technologies for water purification. Most studies have focused on the role of bacteria in membrane fouling as they are the most dominant and best studied organisms present in the MBR. In contrast, there is limited information on the role of the archaeal community in biofilm formation in MBRs. This study investigated the composition of the archaeal community during the process of biofouling in an MBR. The archaeal community was observed to have lower richness and diversity in the biofilm than the sludge during the establishment of biofilms at low transmembrane pressure (TMP). Clustering of the communities based on the Bray-Curtis similarity matrix indicated that a subset of the sludge archaeal community formed the initial biofilms. The archaeal community in the biofilm was mainly composed of Thermoprotei, Thermoplasmata, Thermococci, Methanopyri, Methanomicrobia and Halobacteria. Among them, the Thermoprotei and Thermoplasmata were present at higher relative proportions in the biofilms than they were in the sludge. Additionally, the Thermoprotei, Thermoplasmata and Thermococci were the dominant organisms detected in the initial biofilms at low TMP, while as the TMP increased, the Methanopyri, Methanomicrobia, Aciduliprofundum and Halobacteria were present at higher abundances in the biofilms at high TMP.


Asunto(s)
Archaea/clasificación , Archaea/genética , Incrustaciones Biológicas , Reactores Biológicos , Membranas Artificiales , Biopelículas , ADN de Archaea/genética , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos
8.
Angew Chem Int Ed Engl ; 54(11): 3368-86, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25613795

RESUMEN

Membrane technology offers the best options to "drought proof" mankind on an increasingly thirsty planet by purifying seawater or used (waste) water. Although desalination by reverse osmosis (RO) and wastewater treatment by membrane bioreactors are well established the various membrane technologies still need to be significantly improved in terms of separation properties, energy demand and costs. We can now define the ideal characteristics of membranes and advances in material science and novel chemistries are leading to increasingly effective membranes. However developments in membranes must be matched by improved device design and membrane engineering. It is likely that limitations in fluid mechanics and mass transfer will define the upper bounds of membrane performance. Nevertheless major advances and growth over the next 20 years can be anticipated with RO remaining as the key to desalination and reclamation, with other membrane processes growing in support and in niche areas.


Asunto(s)
Purificación del Agua/métodos , Membranas Artificiales
9.
Environ Sci Technol ; 48(11): 6335-41, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24797803

RESUMEN

The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication.


Asunto(s)
Destilación/instrumentación , Membranas Artificiales , Nanofibras/química , Purificación del Agua/instrumentación , Materiales Biomiméticos/química , Interacciones Hidrofóbicas e Hidrofílicas , Polivinilos/química , Porosidad , Dióxido de Silicio/química
10.
Environ Sci Technol ; 48(24): 14273-81, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25379759

RESUMEN

Fouling control is one of the critical issues in membrane filtration and plays a very important role in water/wastewater treatment. Better understanding of the underlying fouling mechanisms entails novel characterization techniques that can realize a real-time noninvasive observation and provide high resolution images recording the formation of a fouling layer. This work presents a characterization method based on optical coherence tomography (OCT), which is able to detect the internal structures and motions by analyzing the interference signals. An OCT system was incorporated with a laboratory-scale membrane filtration system, and the growth of the fouling layer was observed by using the structural imaging. Taking advantage of the Doppler effects, the OCT-based characterization also provided the velocity profiles of the fluid field, which are of great value in analyzing the formation of the cake layer. The characterization results clearly reveal for the first time the evolution of the morphology of the cake layer under different microhydrodynamic environments. This study demonstrates that OCT-based characterization is a powerful tool for investigating the dynamic processes during membrane fouling.


Asunto(s)
Incrustaciones Biológicas , Membranas Artificiales , Tomografía de Coherencia Óptica , Purificación del Agua/métodos , Reactores Biológicos , Filtración/métodos , Eliminación de Residuos Líquidos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA