Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(4): 882-896, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813611

RESUMEN

Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA-deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD(+)-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP-1. This phenotype is rescued by PARP-1 inhibition or by supplementation with NAD(+) precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a nuclear-mitochondrial crosstalk that is critical for the maintenance of mitochondrial health.


Asunto(s)
Mitofagia , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sirtuina 1/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Xerodermia Pigmentosa/fisiopatología , Envejecimiento , Animales , Apoptosis , Autofagia , Caenorhabditis elegans , Línea Celular , Humanos , Canales Iónicos/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas/metabolismo , Ratas , Proteína Desacopladora 2 , Xerodermia Pigmentosa/metabolismo
2.
Nat Rev Mol Cell Biol ; 17(5): 308-21, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26956196

RESUMEN

Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.


Asunto(s)
Envejecimiento , Daño del ADN , Mitocondrias/fisiología , Animales , Apoptosis , Núcleo Celular/genética , Reparación del ADN , Inestabilidad Genómica , Humanos , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
3.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33341877

RESUMEN

Biomedical knowledge graphs (KGs), which can help with the understanding of complex biological systems and pathologies, have begun to play a critical role in medical practice and research. However, challenges remain in their embedding and use due to their complex nature and the specific demands of their construction. Existing studies often suffer from problems such as sparse and noisy datasets, insufficient modeling methods and non-uniform evaluation metrics. In this work, we established a comprehensive KG system for the biomedical field in an attempt to bridge the gap. Here, we introduced PharmKG, a multi-relational, attributed biomedical KG, composed of more than 500 000 individual interconnections between genes, drugs and diseases, with 29 relation types over a vocabulary of ~8000 disambiguated entities. Each entity in PharmKG is attached with heterogeneous, domain-specific information obtained from multi-omics data, i.e. gene expression, chemical structure and disease word embedding, while preserving the semantic and biomedical features. For baselines, we offered nine state-of-the-art KG embedding (KGE) approaches and a new biological, intuitive, graph neural network-based KGE method that uses a combination of both global network structure and heterogeneous domain features. Based on the proposed benchmark, we conducted extensive experiments to assess these KGE models using multiple evaluation metrics. Finally, we discussed our observations across various downstream biological tasks and provide insights and guidelines for how to use a KG in biomedicine. We hope that the unprecedented quality and diversity of PharmKG will lead to advances in biomedical KG construction, embedding and application.


Asunto(s)
Investigación Biomédica , Minería de Datos , Redes Neurales de la Computación , Semántica , Programas Informáticos , Benchmarking , Humanos
4.
Alzheimers Dement ; 19(12): 5573-5582, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37264981

RESUMEN

INTRODUCTION: The kynurenine pathway's (KP) malfunction is closely related to Alzheimer's disease (AD), for antagonistic kynurenic acid (KA) and agonistic quinolinic acid act on the N-methyl-D-aspartate receptor, a possible therapeutic target in treating AD. METHODS: In our longitudinal case-control study, KP metabolites in the cerebrospinal fluid were analyzed in 311 patients with AD and 105 cognitively unimpaired controls. RESULTS: Patients with AD exhibited higher concentrations of KA (ß = 0.18, P < 0.01) and picolinic acid (ß = 0.20, P < 0.01) than the controls. KA was positively associated with tau pathology (ß = 0.29, P < 0.01), and a higher concentration of KA was associated with the slower progression of dementia. DISCUSSION: The higher concentrations of neuroprotective metabolites KA and picolinic acid suggest that the activation of the KP's neuroprotective branch is an adaptive response in AD and may be a promising target for intervention and treatment. Highlights Patients with Alzheimer's disease (AD) exhibited higher concentrations of kynurenic acid and picolinic acid than controls. Higher concentrations of kynurenic acid were associated with slower progression of AD. Potential neurotoxic kynurenines were not increased among patients with AD. Activation of the kynurenine pathway's neuroprotective branch may be an adaptive response in AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Quinurenina/líquido cefalorraquídeo , Ácido Quinurénico/metabolismo , Estudios de Casos y Controles , Progresión de la Enfermedad
5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613582

RESUMEN

Nicotinamide adenine dinucleotide (oxidized form, NAD+) is a critical coenzyme, with functions ranging from redox reactions and energy metabolism in mitochondrial respiration and oxidative phosphorylation to being a central player in multiple cellular signaling pathways, organ resilience, health, and longevity. Many of its cellular functions are executed via serving as a co-substrate for sirtuins (SIRTs), poly (ADP-ribose) polymerases (PARPs), and CD38. Kidney damage and diseases are common in the general population, especially in elderly persons and diabetic patients. While NAD+ is reduced in acute kidney injury (AKI) and chronic kidney disease (CKD), mounting evidence indicates that NAD+ augmentation is beneficial to AKI, although conflicting results exist for cases of CKD. Here, we review recent progress in the field of NAD+, mainly focusing on compromised NAD+ levels in AKI and its effect on essential cellular pathways, such as mitochondrial dysfunction, compromised autophagy, and low expression of the aging biomarker αKlotho (Klotho) in the kidney. We also review the compromised NAD+ levels in renal fibrosis and senescence cells in the case of CKD. As there is an urgent need for more effective treatments for patients with injured kidneys, further studies on NAD+ in relation to AKI/CKD may shed light on novel therapeutics.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Sirtuinas , Humanos , Metabolismo Energético , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sirtuinas/metabolismo
6.
Appl Soft Comput ; 116: 108291, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34934410

RESUMEN

The world is currently experiencing an ongoing pandemic of an infectious disease named coronavirus disease 2019 (i.e., COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Computed Tomography (CT) plays an important role in assessing the severity of the infection and can also be used to identify those symptomatic and asymptomatic COVID-19 carriers. With a surge of the cumulative number of COVID-19 patients, radiologists are increasingly stressed to examine the CT scans manually. Therefore, an automated 3D CT scan recognition tool is highly in demand since the manual analysis is time-consuming for radiologists and their fatigue can cause possible misjudgment. However, due to various technical specifications of CT scanners located in different hospitals, the appearance of CT images can be significantly different leading to the failure of many automated image recognition approaches. The multi-domain shift problem for the multi-center and multi-scanner studies is therefore nontrivial that is also crucial for a dependable recognition and critical for reproducible and objective diagnosis and prognosis. In this paper, we proposed a COVID-19 CT scan recognition model namely coronavirus information fusion and diagnosis network (CIFD-Net) that can efficiently handle the multi-domain shift problem via a new robust weakly supervised learning paradigm. Our model can resolve the problem of different appearance in CT scan images reliably and efficiently while attaining higher accuracy compared to other state-of-the-art methods.

7.
Appl Microbiol Biotechnol ; 104(11): 4675-4703, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32274562

RESUMEN

This article reviews mushrooms with anti-breast cancer activity. The mushrooms covered which are better known include the following: button mushroom Agaricus bisporus, Brazilian mushroom Agaricus blazei, Amauroderma rugosum, stout camphor fungus Antrodia camphorata, Jew's ear (black) fungus or black wood ear fungus Auricularia auricula-judae, reishi mushroom or Lingzhi Ganoderma lucidum, Ganoderma sinense, maitake mushroom or sheep's head mushroom Grifola frondosa, lion's mane mushroom or monkey head mushroom Hericium erinaceum, brown beech mushroom Hypsizigus marmoreus, sulfur polypore mushroom Laetiporus sulphureus, Lentinula edodes (shiitake mushroom), Phellinus linteus (Japanese "meshimakobu," Chinese "song gen," Korean "sanghwang," American "black hoof mushroom"), abalone mushroom Pleurotus abalonus, king oyster mushroom Pleurotus eryngii, oyster mushroom Pleurotus ostreatus, tuckahoe or Fu Ling Poria cocos, and split gill mushroom Schizophyllum commune. Antineoplastic effectiveness in human clinical trials and mechanism of anticancer action have been reported for Antrodia camphorata, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa, and Lentinula edodes.


Asunto(s)
Agaricales/química , Agaricales/clasificación , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Animales , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Mezclas Complejas/química , Mezclas Complejas/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratas
8.
Appl Microbiol Biotechnol ; 104(10): 4211-4226, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32193575

RESUMEN

Ribosome-inactivating proteins (RIPs) consist of three varieties. Type 1 RIPs are single-chained and approximately 30-kDa in molecular weight. Type 2 RIPs are double-chained and composed of a type 1 RIP chain and a lectin chain. Type III RIPs, such as maize b-32 barley and JIP60 which are produced as single-domain proenzymes, possess an N-terminal domain corresponding to the A domain of RIPs and fused to a C-terminal domain. In addition to the aforementioned three types of RIPs originating from flowering plants, there are recently discovered proteins and peptides with ribosome-inactivating and protein synthesis inhibitory activities but which are endowed with characteristics such as molecular weights distinctive from those of the regular RIPs. These new/unusual RIPs discussed in the present review encompass metazoan RIPs from Anopheles and Culex mosquitos, antimicrobial peptides derived from RIP of the pokeweed Phytolacca dioica, maize RIP (a type III RIP derived from a precursor form), RIPs from the garden pea and the kelp. In addition, RIPs with a molecular weight smaller than those of regular type 1 RIPs are produced by plants in the Cucurbitaceae family including the bitter gourd, bottle gourd, sponge gourd, ridge gourd, wax gourd, hairy gourd, pumpkin, and Chinese cucumber. A small type II RIP from camphor tree (Cinnamomum camphora) seeds and a snake gourd type II RIP with its catalytic chain cleaved into two have been reported. RIPs produced from mushrooms including the golden needle mushroom, king tuber mushroom, straw mushroom, and puffball mushroom are also discussed in addition to a type II RIP from the mushroom Polyporus umbellatus. Bacterial (Spiroplasma) RIPs associated with the fruitfly, Shiga toxin, and Streptomyces coelicolor RIP are also dealt with. The aforementioned proteins display a diversity of molecular weights, amino acid sequences, and mechanisms of action. Some of them are endowed with exploitable antipathogenic activities.


Asunto(s)
Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Inactivadoras de Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Culicidae/química , Proteínas de Insectos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Inactivadoras de Ribosomas/clasificación , Proteínas Inactivadoras de Ribosomas/farmacología , Semillas/química
9.
Proc Natl Acad Sci U S A ; 113(44): 12502-12507, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791127

RESUMEN

Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1). Indeed, inhibition of ribosomal DNA transcription leads to mitochondrial dysfunction in a number of cell lines. Furthermore, machine-learning algorithms predict that diseases with defects in ribosomal DNA (rDNA) transcription have mitochondrial dysfunction, and, accordingly, this is found when factors involved in rDNA transcription are knocked down. Mechanistically, loss of CSA or CSB leads to polymerase stalling at non-B DNA in a neuroblastoma cell line, in particular at G-quadruplex structures, and recombinant CSB can melt G-quadruplex structures. Indeed, stabilization of G-quadruplex structures activates PARP1 and leads to accelerated aging in Caenorhabditis elegans In conclusion, this work supports a role for impaired ribosomal DNA transcription in Cockayne syndrome and suggests that transcription-coupled resolution of secondary structures may be a mechanism to repress spurious activation of a DNA damage response.


Asunto(s)
ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , ADN de Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Factores de Transcripción/genética , Transcripción Genética , Línea Celular Tumoral , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , ADN Ribosómico/genética , G-Cuádruplex , Técnicas de Silenciamiento del Gen , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Factores de Transcripción/metabolismo
10.
Invest New Drugs ; 33(1): 1-11, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25200916

RESUMEN

BACKGROUND: The incidence and mortality of hepatocellular carcinoma (HCC) remain high worldwide. Drug screening from natural plants is one of the potential therapeutic approaches on HCC. METHODS: The antitumor effect of momordica charantia lectin (MCL) was examined, using MTT, colony formation, AnnexinV/PI staining, western blot and animal model. RESULTS: MCL treatment induced G2/M phase arrest, autophagy, DNA fragmentation, mitochondrial injury, and subsequently cell apoptosis in HCC cells. Activation of caspase and MAPK pathway was involved in MCL-induced apoptosis. In vitro and in vivo studies showed that up-regulation of truncated Bid (tBid) upon MCL treatment. Correlation analysis revealed that Bid expression was reversely associated with the IC50 of MCL. Bid suppression using Bid siRNA, BI-6C9 (Bid inhibitor) and Z-IETD-FMK (caspase 8 inhibitor) dramatically attenuated MCL-induced cell proliferation inhibition, caspase 3 activation, ΔΨm depolarization and apoptosis. In addition, combination of MCL and sorafenib exerted stronger lethal activity towards HCC in vitro and in vivo. CONCLUSION: Our data show that the natural compound MCL manifests antitumor activities towards HCC and therefore suggest MCL as a promising chemotherapeutic agent.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Momordica charantia , Lectinas de Plantas/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/fisiopatología , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Desnudos , Lectinas de Plantas/farmacología , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Biochim Biophys Acta ; 1833(5): 987-96, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23274857

RESUMEN

Breast cancer is the second most common cancer with a high incidence rate worldwide. One of the promising therapeutic approaches on breast cancer is to use the drugs that target the estrogen receptor (ER). In the present investigation, marmorin, a type I ribosome inactivating protein from the mushroom Hypsizigus marmoreus, inhibited the survival of breast cancer in vitro and in vivo. It evinced more potent cytotoxicity toward estrogen receptor (ER)-positive MCF7 breast cancer cells than ER-negative MDA-MB-231 cells. Further study disclosed that marmorin undermined the expression level of estrogen receptor α (ERα) and significantly inhibited the proliferation of MCF7 cells induced by 17ß-estradiol. Knockdown of ERα in MCF7 cells significantly attenuated the inhibitory effect of marmorin on proliferation, suggesting that the ERα-mediated pathway was implicated in the suppressive action of marmorin on ER-positive breast cancer cells. Moreover, marmorin induced time-dependent apoptosis in both MCF7 and MDA-MB-231 cells. It brought about G2/M-phase arrest, mitochondrial membrane potential depolarization and caspase-9 activation in MCF7 cells, and to a lesser extent in MDA-MB-231 cells. Marmorin triggered the death receptor apoptotic pathway (e.g. caspase-8 activation) and endoplasmic reticulum stress (ERS, as evidenced by phosphorylation of PERK and IRE1α, cleavage of caspase-12, and up-regulation of CHOP expression) in both MCF7 and MDA-MB-231 cells. In summary, marmorin exhibited inhibitory effect on breast cancer partially via diminution of ERα and apoptotic pathways mediated by mitochondrial, death receptor and ERS. The results advocate that marmorin is a potential candidate for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Proteínas Fúngicas/administración & dosificación , Neoplasias Hormono-Dependientes , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Mitocondrias/metabolismo , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/metabolismo , Regulación hacia Arriba/efectos de los fármacos , eIF-2 Quinasa/metabolismo
12.
Appl Microbiol Biotechnol ; 98(8): 3475-94, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24562325

RESUMEN

Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper ß-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antivirales/aislamiento & purificación , Organismos Acuáticos/química , Productos Biológicos/aislamiento & purificación , Antifúngicos/farmacología , Antivirales/farmacología , Productos Biológicos/farmacología
13.
Brain Struct Funct ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916724

RESUMEN

In layer II of the entorhinal cortex, the principal neurons that project to the dentate gyrus and the CA3/2 hippocampal fields markedly express the large glycoprotein reelin (Re + ECLII neurons). In rodents, neurons located at the dorsal extreme of the EC, which border the rhinal fissure, express the highest levels, and the expression gradually decreases at levels successively further away from the rhinal fissure. Here, we test two predictions deducible from the hypothesis that reelin expression is strongly correlated with neuronal metabolic rate. Since the mitochondrial turnover rate serves as a proxy for energy expenditure, the mitophagy rate arguably also qualifies as such. Because messenger RNA of the canonical promitophagic BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (Bnip3) is known to be highly expressed in the EC, we predicted that Bnip3 would be upregulated in Re + ECLII neurons, and that the degree of upregulation would strongly correlate with the expression level of reelin in these neurons. We confirm both predictions, supporting that the energy requirement of Re + ECLII neurons is generally high and that there is a systematic increase in metabolic rate as one moves successively closer to the rhinal fissure. Intriguingly, the systematic variation in energy requirement of the neurons that manifest the observed reelin gradient appears to be consonant with the level of spatial and temporal detail by which they encode information about the external environment.

14.
Cell Biosci ; 14(1): 7, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184705

RESUMEN

BACKGROUND: Metabolic dysfunction is one of the main symptoms of Werner syndrome (WS); however, the underlying mechanisms remain unclear. Here, we report that loss of WRN accelerates adipogenesis at an early stage both in vitro (stem cells) and in vivo (zebrafish). Moreover, WRN depletion causes a transient upregulation of late-stage of adipocyte-specific genes at an early stage. METHODS: In an in vivo study, we generated wrn-/- mutant zebrafish and performed histological stain and Oil Red O staining to assess the fat metabolism. In an in vitro study, we used RNA-seq and ATAC-seq to profile the transcriptional features and chromatin accessibility in WRN depleted adipocytes. Moreover, we performed ChIP-seq to further study the regulatory mechanisms of metabolic dysfunction in WS. RESULTS: Our findings show that mechanistically WRN deficiency causes SMARCA5 upregulation. SMARCA5 is crucial in chromatin remodeling and gene regulation. Additionally, rescuing WRN could normalize SMARCA5 expression and adipocyte differentiation. Moreover, we find that nicotinamide riboside (NR) supplementation restores adipocyte metabolism in both stem cells and zebrafish models. CONCLUSIONS: Our findings unravel a new mechanism for the influence of WRN in the early stage of adipogenesis and provide a possible treatment for metabolic dysfunction in WS. These data provide promising insights into potential therapeutics for ageing and ageing-related diseases.

15.
Int J Biol Sci ; 20(8): 2860-2880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904024

RESUMEN

Mitochondrial diseases are associated with neuronal death and mtDNA depletion. Astrocytes respond to injury or stimuli and damage to the central nervous system. Neurodegeneration can cause astrocytes to activate and acquire toxic functions that induce neuronal death. However, astrocyte activation and its impact on neuronal homeostasis in mitochondrial disease remain to be explored. Using patient cells carrying POLG mutations, we generated iPSCs and then differentiated these into astrocytes. POLG astrocytes exhibited mitochondrial dysfunction including loss of mitochondrial membrane potential, energy failure, loss of complex I and IV, disturbed NAD+/NADH metabolism, and mtDNA depletion. Further, POLG derived astrocytes presented an A1-like reactive phenotype with increased proliferation, invasion, upregulation of pathways involved in response to stimulus, immune system process, cell proliferation and cell killing. Under direct and indirect co-culture with neurons, POLG astrocytes manifested a toxic effect leading to the death of neurons. We demonstrate that mitochondrial dysfunction caused by POLG mutations leads not only to intrinsic defects in energy metabolism affecting both neurons and astrocytes, but also to neurotoxic damage driven by astrocytes. These findings reveal a novel role for dysfunctional astrocytes that contribute to the pathogenesis of POLG diseases.


Asunto(s)
Astrocitos , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN , Mitocondrias , Mutación , Astrocitos/metabolismo , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , Humanos , Mitocondrias/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Neuronas/metabolismo , Potencial de la Membrana Mitocondrial , Células Madre Pluripotentes Inducidas/metabolismo , Células Cultivadas , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Técnicas de Cocultivo
16.
Int J Biol Sci ; 20(4): 1194-1217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385069

RESUMEN

Alpers' syndrome is an early-onset neurodegenerative disorder usually caused by biallelic pathogenic variants in the gene encoding the catalytic subunit of polymerase-gamma (POLG), which is essential for mitochondrial DNA (mtDNA) replication. The disease is progressive, incurable, and inevitably it leads to death from drug-resistant status epilepticus. The neurological features of Alpers' syndrome are intractable epilepsy and developmental regression, with no effective treatment; the underlying mechanisms are still elusive, partially due to lack of good experimental models. Here, we generated the patient derived induced pluripotent stem cells (iPSCs) from one Alpers' patient carrying the compound heterozygous mutations of A467T (c.1399G>A) and P589L (c.1766C>T), and further differentiated them into cortical organoids and neural stem cells (NSCs) for mechanistic studies of neural dysfunction in Alpers' syndrome. Patient cortical organoids exhibited a phenotype that faithfully replicated the molecular changes found in patient postmortem brain tissue, as evidenced by cortical neuronal loss and depletion of mtDNA and complex I (CI). Patient NSCs showed mitochondrial dysfunction leading to ROS overproduction and downregulation of the NADH pathway. More importantly, the NAD+ precursor nicotinamide riboside (NR) significantly ameliorated mitochondrial defects in patient brain organoids. Our findings demonstrate that the iPSC model and brain organoids are good in vitro models of Alpers' disease; this first-in-its-kind stem cell platform for Alpers' syndrome enables therapeutic exploration and has identified NR as a viable drug candidate for Alpers' disease and, potentially, other mitochondrial diseases with similar causes.


Asunto(s)
Esclerosis Cerebral Difusa de Schilder , Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Niacinamida/análogos & derivados , Compuestos de Piridinio , Humanos , ADN Polimerasa gamma , NAD/genética , ADN Mitocondrial/genética , Mutación
17.
Lancet Healthy Longev ; 5(1): e17-e30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38183996

RESUMEN

BACKGROUND: Sexually active older adults are often more susceptible to HIV and other sexually transmitted infections (STIs) due to various health conditions (especially a weakened immune system) and low use of condoms. We aimed to assess the global, regional, and national burdens and trends of HIV and other STIs in older adults from 1990 to 2019. METHODS: We retrieved data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 on the incidence and disability-adjusted life-years (DALYs) of HIV and other STIs (syphilis, chlamydia, gonorrhoea, trichomoniasis, and genital herpes) for older adults aged 60-89 years in 204 countries and territories from 1990 to 2019. Estimated annual percentage changes in the age-standardised incidence and DALY rates of HIV and other STIs, by age, sex, and Socio-demographic Index (SDI), were calculated to quantify the temporal trends. Spearman correlation analysis was used to examine the relationship between age-standardised rates and SDI. FINDINGS: In 2019, among older adults globally, there were an estimated 77 327 (95% uncertainty interval 59 443 to 97 648) new cases of HIV (age-standardised incidence rate 7·6 [5·9 to 9·6] per 100 000 population) and 26 414 267 (19 777 666 to 34 860 678) new cases of other STIs (2607·1 [1952·1 to 3440·8] per 100 000). The age-standardised incidence rate decreased by an average of 2·02% per year (95% CI -2·38 to -1·66) for HIV and remained stable for other STIs (-0·02% [-0·06 to 0·01]) from 1990 to 2019. The number of DALYs globally in 2019 was 1 905 099 (95% UI 1 670 056 to 2 242 807) for HIV and 132 033 (95% UI 83 512 to 225 630) for the other STIs. The age-standardised DALY rate remained stable from 1990 to 2019, with an average change of 0·97% (95% CI -0·54 to 2·50) per year globally for HIV but decreased by an annual average of 1·55% (95% CI -1·66 to -1·43) for other STIs. Despite the global decrease in the age-standardised incidence rate of HIV in older people from 1990 to 2019, many regions showed increases, with the largest increases seen in eastern Europe (average annual change 17·84% [14·16 to 21·63], central Asia (14·26% [11·35 to 17·25]), and high-income Asia Pacific (7·52% [6·54 to 8·51]). Regionally, the age-standardised incidence and DALY rates of HIV and other STIs decreased with increases in the SDI. INTERPRETATION: Although the incidence and DALY rates of HIV and STIs either declined or remained stable from 1990 to 2019, there were regional and demographic disparities. Health-care providers should be aware of the effects of ageing societies and other societal factors on the risk of HIV and other STIs in older adults, and develop age-appropriate interventions. The disparities in the allocation of health-care resources for older adults among regions of different SDIs should be addressed. FUNDING: Natural Science Foundation of China, Fujian Province's Third Batch of Flexible Introduction of High-Level Medical Talent Teams, Science and Technology Innovation Team (Tianshan Innovation Team) Project of Xinjiang Uighur Autonomous Region, Cure Alzheimer's Fund, Helse Sør-Øst, the Research Council of Norway, Molecule/VitaDAO, NordForsk Foundation, Akershus University Hospital, the Civitan Norges Forskningsfond for Alzheimers Sykdom, the Czech Republic-Norway KAPPA programme, and the Rosa Sløyfe/Norwegian Cancer Society & Norwegian Breast Cancer Society.


Asunto(s)
Neoplasias de la Mama , Gonorrea , Infecciones por VIH , Herpes Genital , Enfermedades de Transmisión Sexual , Humanos , Anciano , Femenino , Carga Global de Enfermedades , Enfermedades de Transmisión Sexual/epidemiología , Infecciones por VIH/epidemiología
18.
Alzheimers Res Ther ; 16(1): 167, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068471

RESUMEN

BACKGROUND: Sex differences in neuroinflammation could contribute to women's increased risk of Alzheimer's disease (AD), providing rationale for exploring sex-specific AD biomarkers. In AD, dysregulation of the kynurenine pathway (KP) contributes to neuroinflammation and there is some evidence of sex differences in KP metabolism. However, the sex-specific associations between KP metabolism and biomarkers of AD and neuroinflammation need to be explored further. METHODS: Here we investigate sex differences in cerebrospinal fluid concentrations of seven KP metabolites and sex-specific associations with established AD biomarkers and neopterin, an indicator of neuroinflammation. This study included 311 patients with symptomatic AD and 105 age-matched cognitively unimpaired (CU) controls, followed for up to 5 years. RESULTS: We found sex differences in KP metabolites in the AD group, with higher levels of most metabolites in men, while there were no sex differences in the CU group. In line with this, more KP metabolites were significantly altered in AD men compared to CU men, and there was a trend in the same direction in AD women. Furthermore, we found sex-specific associations between kynurenic acid and the kynurenic acid/quinolinic acid ratio with neopterin, but no sex differences in the associations between KP metabolites and clinical progression. DISCUSSION: In our cohort, sex differences in KP metabolites were restricted to AD patients. Our results suggest that dysregulation of the KP due to increased inflammation could contribute to higher AD risk in women.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Ácido Quinurénico , Neopterin , Caracteres Sexuales , Humanos , Neopterin/líquido cefalorraquídeo , Femenino , Masculino , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/metabolismo , Ácido Quinurénico/líquido cefalorraquídeo , Ácido Quinurénico/metabolismo , Anciano , Biomarcadores/líquido cefalorraquídeo , Persona de Mediana Edad , Quinurenina/metabolismo , Quinurenina/líquido cefalorraquídeo , Anciano de 80 o más Años , Factores Sexuales
19.
Curr Neuropharmacol ; 21(7): 1477-1481, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35762540

RESUMEN

Mitochondria are the main sites of energy production and a major source of metabolic stress. Not surprisingly, impairment of mitochondrial homeostasis is strongly associated with the development and progression of a broad spectrum of human pathologies, including neurodegenerative disorders. Mitophagy mediates the selective degradation of damaged organelles, thus promoting cellular viability and tissue integrity. Defective mitophagy triggers cellular senescence and prolonged neuroinflammation, leading eventually to cell death and brain homeostasis collapse. Here, we survey the intricate interplay between mitophagy and neuroinflammation, highlighting that mitophagy can be a focal point for therapeutic interventions to tackle neurodegeneration.


Asunto(s)
Mitofagia , Enfermedades Neurodegenerativas , Humanos , Mitofagia/fisiología , Enfermedades Neuroinflamatorias , Mitocondrias/metabolismo , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo
20.
STAR Protoc ; 4(2): 102250, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37104093

RESUMEN

Here, we present an olfactory-dependent chemotaxis assay for evaluating changes in memory-like behavior in both wild-type and Alzheimer's-disease-like C. elegans models. We describe steps for synchronizing and preparing C. elegans populations and for performing isoamyl alcohol conditioning during starvation and chemotaxis assaying. We then detail counting and quantification procedures. This protocol is applicable to mechanistic exploration and drug screening in neurodegenerative diseases and brain aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA