Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Cancer ; 20(1): 1205, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287740

RESUMEN

BACKGROUND: Ovarian cancer (OV) is one of the most common malignant tumors of gynecology oncology. The lack of effective early diagnosis methods and treatment strategies result in a low five-year survival rate. Also, immunotherapy plays an important auxiliary role in the treatment of advanced OV patient, so it is of great significance to find out effective immune-related tumor markers for the diagnosis and treatment of OV. METHODS: Based on the consensus clustering analysis of single-sample gene set enrichment analysis (ssGSEA) score transformed via The Cancer Genome Atlas (TCGA) mRNA profile, we obtained two groups with high and low levels of immune infiltration. Multiple machine learning methods were conducted to explore prognostic genes associated with immune infiltration. Simultaneously, the correlation between the expression of mark genes and immune cells components was explored. RESULTS: A prognostic classifier including 5 genes (CXCL11, S1PR4, TNFRSF17, FPR1 and DHRS95) was established and its robust efficacy for predicting overall survival was validated via 1129 OV samples. Some significant variations of copy number on gene loci were found between two risk groups and it showed that patients with fine chemosensitivity has lower risk score than patient with poor chemosensitivity (P = 0.013). The high and low-risk groups showed significantly different distribution (P < 0.001) of five immune cells (Monocytes, Macrophages M1, Macrophages M2, T cells CD4 menory and T cells CD8). CONCLUSION: The present study identified five prognostic genes associated with immune infiltration of OV, which may provide some potential clinical implications for OV treatment.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Inmunoterapia/métodos , Neoplasias Ováricas/genética , Femenino , Humanos , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Pronóstico , Análisis de Supervivencia
3.
Stem Cell Res Ther ; 15(1): 19, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38229180

RESUMEN

BACKGROUND: After myocardial infarction, the lost myocardium is replaced by fibrotic tissue, eventually progressively leading to myocardial dysfunction. Direct reprogramming of fibroblasts into cardiomyocytes via the forced overexpression of cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) offers a promising strategy for cardiac repair. The limited reprogramming efficiency of this approach, however, remains a significant challenge. METHODS: We screened seven factors capable of improving direct cardiac reprogramming of both mice and human fibroblasts by evaluating small molecules known to be involved in cardiomyocyte differentiation or promoting human-induced pluripotent stem cell reprogramming. RESULTS: We found that vitamin C (VitC) significantly increased cardiac reprogramming efficiency when added to GMT-overexpressing fibroblasts from human and mice in 2D and 3D model. We observed a significant increase in reactive oxygen species (ROS) generation in human and mice fibroblasts upon Doxy induction, and ROS generation was subsequently reduced upon VitC treatment, associated with increased reprogramming efficiency. However, upon treatment with dehydroascorbic acid, a structural analog of VitC but lacking antioxidant properties, no difference in reprogramming efficiency was observed, suggesting that the effect of VitC in enhancing cardiac reprogramming is partly dependent of its antioxidant properties. CONCLUSIONS: Our findings demonstrate that VitC supplementation significantly enhances the efficiency of cardiac reprogramming, partially by suppressing ROS production in the presence of GMT.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno , Ácido Ascórbico/farmacología , Antioxidantes/farmacología , Reprogramación Celular , Proteínas de Dominio T Box/genética , Factores de Transcripción MEF2/genética , Miocitos Cardíacos , Vitaminas , Fibroblastos
4.
Sci Rep ; 13(1): 18234, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880335

RESUMEN

Physicians-patients are the two crucial participants in medical malpractice. The government, as the central authority responsible for addressing medical malpractices, plays a pivotal role in this matter. Guided by governmental agencies, its regulations, administrative orders, and policies serve as the primary governance mechanisms to address medical malpractice, providing an effective means to balance the doctor-patient relationship and foster social harmony and stable development. A doctor-patient evolutionary game model developed based on the principles of information asymmetry and finite rationality. The study explores the strategic decision-making process of these two players within the context of medical malpractice. Through the manipulation of various parameters, the model's evolutionary equilibrium strategy is demonstrated using Vensim PLE Version 6.4 simulation. The findings reveal that government regulation, patient cognition, and the benefits associated with standardized medical practices are the pivotal factors influencing the doctor-patient evolutionary game system under government regulation. It is possible to mitigate medical malpractice through adjusting relative weights of differing strategic options, adding penalties for unlawful conduct, and normalizing malpractice charges on the basis of physicians' income from standardized practice. To effectively address medical malpractice, proposed measures include adjusting the regulatory framework, reasonably determining the strength of regulations regarding medical practitioners' illegal practices and patient medical malpractice behavior, diversifying regulatory approaches, establishing comprehensive physician-patient management systems for information to resolve medical malpractices.


Asunto(s)
Mala Praxis , Médicos , Humanos , Relaciones Médico-Paciente , Teoría del Juego , Regulación Gubernamental
5.
IEEE/ACM Trans Comput Biol Bioinform ; 20(2): 1308-1318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35503834

RESUMEN

Previous studies have confirmed microRNA (miRNA), small single-stranded non-coding RNA, participates in various biological processes and plays vital roles in many complex human diseases. Therefore, developing an efficient method to infer potential miRNA disease associations could greatly help understand operational mechanisms for diseases at the molecular level. However, during these early stages for miRNA disease prediction, traditional biological experiments are laborious and expensive. Therefore, this study proposes a novel method called AGAEMD (node-level Attention Graph Auto-Encoder to predict potential MiRNA Disease associations). We first create a heterogeneous matrix incorporating miRNA similarity, disease similarity, and known miRNA-disease associations. Then these matrixes are input into a node-level attention encoder-decoder network which utilizes low dimensional dense embeddings to represent nodes and calculate association scores. To verify the effectiveness of the proposed method, we conduct a series of experiments on two benchmark datasets (the Human MicroRNA Disease Database v2.0 and v3.2) and report the averages over 10 runs in comparison with several state-of-the-art methods. Experimental results have demonstrated the excellent performance of AGAEMD in comparison with other methods. Three important diseases (Colon Neoplasms, Lung Neoplasms, Lupus Vulgaris) were applied in case studies. The results comfirm the reliable predictive performance of AGAEMD.


Asunto(s)
Neoplasias del Colon , Neoplasias Pulmonares , MicroARNs , Humanos , MicroARNs/genética , Biología Computacional/métodos , Neoplasias del Colon/genética , Neoplasias Pulmonares/genética , Bases de Datos Factuales
6.
Protein Cell ; 14(8): 560-578, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526344

RESUMEN

Polyploid cells, which contain more than one set of chromosome pairs, are very common in nature. Polyploidy can provide cells with several potential benefits over their diploid counterparts, including an increase in cell size, contributing to organ growth and tissue homeostasis, and improving cellular robustness via increased tolerance to genomic stress and apoptotic signals. Here, we focus on why polyploidy in the cell occurs and which stress responses and molecular signals trigger cells to become polyploid. Moreover, we discuss its crucial roles in cell growth and tissue regeneration in the heart, liver, and other tissues.


Asunto(s)
Hepatocitos , Hígado , Humanos , Ciclo Celular , Poliploidía , Homeostasis
7.
Front Immunol ; 14: 1150985, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342338

RESUMEN

Introduction: Immune checkpoint blockade (ICB) is a systemic therapeutic option for advanced hepatocellular carcinoma (HCC). However, low patient response rates necessitate the development of robust predictive biomarkers that identify individuals who will benefit from ICB. A 4-gene inflammatory signature, comprising CD8, PD-L1, LAG-3, and STAT1, was recently shown to be associated with a better overall response to ICB in various cancer types. Here, we examined whether tissue protein expression of CD8, PD-L1, LAG-3, and STAT1 predicts response to ICB in HCC. Methods: HCC samples from 191 Asian patients, comprising resection specimens from 124 patients (ICB-naïve) and pre-treatment specimens from 67 advanced HCC patients treated with ICB (ICB-treated), were analyzed for CD8, PD-L1, LAG-3, and STAT1 tissue expression using multiplex immunohistochemistry followed by statistical and survival analyses. Results: Immunohistochemical and survival analyses of ICB-naïve samples showed that high LAG-3 expression was associated with shorter median progression-free survival (mPFS) and overall survival (mOS). Analysis of ICB-treated samples revealed that high proportions of LAG-3+ and LAG-3+CD8+ cells pre-treatment were most closely associated with longer mPFS and mOS. Using a log-likelihood model, adding the total LAG-3+ cell proportion to the total CD8+ cell proportion significantly increased the predictive values for mPFS and mOS, compared with the total CD8+ cell proportion alone. Moreover, levels of CD8 and STAT1, but not PD-L1, were significantly correlated with better responses to ICB. After analyzing viral-related and non-viral HCC samples separately, only the LAG3+CD8+ cell proportion was significantly associated with responses to ICB regardless of viral status. Conclusion: Immunohistochemical scoring of pre-treatment levels of LAG-3 and CD8 in the tumor microenvironment may help predict ICB benefits in HCC patients. Furthermore, immunohistochemistry-based techniques offer the advantage of being readily translatable in the clinical setting.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Microambiente Tumoral , Linfocitos T CD8-positivos , Inmunoterapia/métodos
8.
Stem Cell Res Ther ; 13(1): 531, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575473

RESUMEN

BACKGROUND: Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) do not display all hallmarks of mature primary cardiomyocytes, especially the ability to use fatty acids (FA) as an energy source, containing high mitochondrial mass, presenting binucleation and increased DNA content per nuclei (polyploidism), and synchronized electrical conduction. This immaturity represents a bottleneck to their application in (1) disease modelling-as most cardiac (genetic) diseases have a middle-age onset-and (2) clinically relevant models, where integration and functional coupling are key. So far, several methods have been reported to enhance iPSC-CM maturation; however, these protocols are laborious, costly, and not easily scalable. Therefore, we developed a simple, low-cost, and rapid protocol to promote cardiomyocyte maturation using two small molecule activators of the peroxisome proliferator-activated receptor ß/δ and gamma coactivator 1-alpha (PPAR/PGC-1α) pathway: asiatic acid (AA) and GW501516 (GW). METHODS AND RESULTS: Monolayers of iPSC-CMs were incubated with AA or GW every other day for ten days resulting in increased expression of FA metabolism-related genes and markers for mitochondrial activity. AA-treated iPSC-CMs responsiveness to the mitochondrial respiratory chain inhibitors increased and exhibited higher flexibility in substrate utilization. Additionally, structural maturity improved after treatment as demonstrated by an increase in mRNA expression of sarcomeric-related genes and higher nuclear polyploidy in AA-treated samples. Furthermore, treatment led to increased ion channel gene expression and protein levels. CONCLUSIONS: Collectively, we developed a fast, easy, and economical method to induce iPSC-CMs maturation via PPAR/PGC-1α activation. Treatment with AA or GW led to increased metabolic, structural, functional, and electrophysiological maturation, evaluated using a multiparametric quality assessment.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Diferenciación Celular , Mitocondrias/metabolismo
9.
Oncol Lett ; 20(6): 366, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33133266

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with a specific tumor immune microenvironment (TIME). Therefore, investigating prognostic immune-related genes (IRGs) that are closely associated with TIME to predict PDAC clinical outcomes is necessary. In the present study, 459 samples of PDAC from the Genotype-Tissue Expression database, The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) were included and a survival-associated module was identified using weighted gene co-expression network analysis. Based on the Cox regression analysis and least absolute shrinkage and selection operator analysis, four IRGs (2'-5'-oligoadenylate synthetase 1, MET proto-oncogene, receptor tyrosine kinase, interleukin 1 receptor type 2 and interleukin 20 receptor subunit ß) were included in the prognostic model to calculate the risk score (RS), and patients with PDAC were divided into high- and low-RS groups. Kaplan-Meier survival and receiver operating characteristic curve analyses demonstrated that the low-RS group had significantly improved survival conditions compared with the high-RS group in TCGA training set. The prognostic function of the model was also validated using ICGC and GEO cohorts. To investigate the mechanism of different overall survival between the high- and low-RS groups, the present study included Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data and Cell Type Identification by Estimating Relative Subset of Known RNA Transcripts algorithms to investigate the state of the tumor microenvironment and immune infiltration inpatients in the cohort from TCGA. In summary, four genes associated with the TIME of PDAC were identified, which may provide a reference for clinical treatment.

10.
Adv Drug Deliv Rev ; 160: 1-18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33039498

RESUMEN

Myocardial infarction (MI) is one of the leading causes of mortality worldwide. It is caused by an acute imbalance between oxygen supply and demand in the myocardium, usually caused by an obstruction in the coronary arteries. The conventional therapy is based on the application of (a combination of) anti-thrombotics, reperfusion strategies to open the occluded artery, stents and bypass surgery. However, numerous patients cannot fully recover after these interventions. In this context, new therapeutic methods are explored. Three decades ago, the first biologicals were tested to improve cardiac regeneration. Angiogenic proteins gained popularity as potential therapeutics. This is not straightforward as proteins are delicate molecules that in order to have a reasonably long time of activity need to be stabilized and released in a controlled fashion requiring advanced delivery systems. To ensure long-term expression, DNA vectors-encoding for therapeutic proteins have been developed. Here, the nuclear membrane proved to be a formidable barrier for efficient expression. Moreover, the development of delivery systems that can ensure entry in the target cell, and also correct intracellular trafficking towards the nucleus are essential. The recent introduction of mRNA as a therapeutic entity has provided an attractive intermediate: prolonged but transient expression from a cytoplasmic site of action. However, protection of the sensitive mRNA and correct delivery within the cell remains a challenge. This review focuses on the application of synthetic delivery systems that target the myocardium to stimulate cardiac repair using proteins, DNA or RNA.


Asunto(s)
Productos Biológicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Isquemia Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Regeneración/fisiología , ADN/administración & dosificación , Terapia Genética/métodos , Humanos , Infarto del Miocardio/tratamiento farmacológico , Nanopartículas , Proteínas/metabolismo , ARN Mensajero/administración & dosificación , Andamios del Tejido/química
11.
Biomolecules ; 10(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825069

RESUMEN

Cardiovascular disease is the leading cause of death worldwide. Current palliative treatments can slow the progression of heart failure, but ultimately, the only curative treatment for end-stage heart failure is heart transplantation, which is only available for a minority of patients due to lack of donors' hearts. Explorative research has shown the replacement of the damaged and lost myocardium by inducing cardiac regeneration from preexisting myocardial cells. Lower vertebrates, such as the newt and zebrafish, can regenerate lost myocardium through cardiomyocyte proliferation. The preexisting adult cardiomyocytes replace the lost cells through subsequent dedifferentiation, proliferation, migration, and re-differentiation. Similarly, neonatal mice show complete cardiac regeneration post-injury; however, this regenerative capacity is remarkably diminished one week after birth. In contrast, the adult mammalian heart presents a fibrotic rather than a regenerative response and only shows signs of partial pathological cardiomyocyte dedifferentiation after injury. In this review, we explore the cellular and molecular responses to myocardial insults in different adult species to give insights for future interventional directions by which one can promote or activate cardiac regeneration in mammals.


Asunto(s)
Miocardio , Miocitos Cardíacos , Regeneración , Animales , Diferenciación Celular , Humanos , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo
12.
Front Physiol ; 11: 590, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612537

RESUMEN

Background: Myocardial infarction (MI) is caused by occlusion of the coronary artery and induces ischemia in the myocardium and eventually a massive loss in cardiomyocytes. Studies have shown many factors or treatments that can affect the healing and remodeling of the heart upon infarction, leading to better cardiac performance and clinical outcome. Previously, miR-132/212 has been shown to play an important role in arteriogenesis in a mouse model of hindlimb ischemia and in the regulation of cardiac contractility in hypertrophic cardiomyopathy in mice. In this study, we explored the role of miR-132/212 during ischemia in a murine MI model. Methods and Results: miR-132/212 knockout mice show enhanced cardiac contractile function at baseline compared to wild-type controls, as assessed by echocardiography. One day after induction of MI by permanent occlusion, miR-132/212 knockout mice display similar levels of cardiac damage as wild-type controls, as demonstrated by infarction size quantification and LDH release, although a trend toward more cardiomyocyte cell death was observed in the knockout mice as shown by TUNEL staining. Four weeks after MI, miR-132/212 knockout mice show no differences in terms of cardiac function, expression of cardiac stress markers, and fibrotic remodeling, although vascularization was reduced. In line with these in vivo observation, overexpression of miR-132 or miR-212 in neonatal rat cardiomyocyte suppress hypoxia induced cardiomyocyte cell death. Conclusion: Although we previously observed a role in collateral formation and myocardial contractility, the absence of miR-132/212 did not affect the overall myocardial performance upon a permanent occlusion of the coronary artery. This suggests an interplay of different roles of this miR-132/212 before and during MI, including an inhibitory effect on cell death and angiogenesis, and a positive effect on cardiac contractility and autophagic response. Thus, spatial or tissue specific manipulation of this microRNA family may be essential to fully understand the roles and to develop interventions to reduce infarct size.

13.
Chem Biol Interact ; 304: 186-193, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30885636

RESUMEN

BACKGROUND: Adriamycin (ADR) is an effective antineoplastic drug; the clinical application of ADR is limited due to fatal heart dysfunction. Exenatide has antioxidant, anti-apoptotic and anti-inflammatory properties. It can alleviate heart damage induced by ischaemia-reperfusion injury. Thus, we assumed that exenatide would produce protective effects on ADR-induced heart dysfunction. METHOD: Mice were treated with exenatide 1 h prior to every ADR treatment for 20 days. Left ventricular function and performance were assessed by echocardiography. Additionally, H9c2 cells were pretreated with exenatide followed by ADR, and intracellular reactive oxygen species (ROS) and cell viability, as well as the lactate dehydrogenase (LDH) and the creatine kinase MB (CK-MB), were subsequently measured. Flow cytometry and TUNEL staining were applied to assess the effect of exenatide on cardiac damage caused by ADR. Western blot and RT-PCR were performed to detect the effect of exenatide on apoptosis-related genes (Bcl-2 and Bax) and inflammation-related genes and/or proteins (tumour necrosis factor-α, interleukin-6, nuclear factor-κB, and p53). RESULT: Echocardiography showed that cardiac dysfunction caused by ADR was significantly improved by treatment with exenatide. ADR mice had harmful changes in the levels of ROS and CK-MB/LDH production, as well as the targeted apoptotic and inflammatory molecules, and these effects were also reversed by exenatide. In vitro, exenatide mitigated ADR-induced oxidative stress and CK-MB/LDH production, as well as Annexin V+/PI+ and TUNEL+ apoptosis in H9c2 cells. CONCLUSION: In conclusion, our research demonstrated the potential protective effects of exenatide on ADR-induced heart dysfunction through suppressing oxidative stress, apoptosis and inflammation.


Asunto(s)
Apoptosis/efectos de los fármacos , Doxorrubicina/antagonistas & inhibidores , Exenatida/farmacología , Hipoglucemiantes/farmacología , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Disfunción Ventricular Izquierda/tratamiento farmacológico , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Doxorrubicina/farmacología , Ecocardiografía , Exenatida/administración & dosificación , Hipoglucemiantes/administración & dosificación , Inflamación/inducido químicamente , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA