Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chem Rev ; 122(3): 4204-4256, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35025505

RESUMEN

Sunlight-driven water splitting to produce hydrogen fuel has stimulated intensive scientific interest, as this technology has the potential to revolutionize fossil fuel-based energy systems in modern society. The oxygen evolution reaction (OER) determines the performance of overall water splitting owing to its sluggish kinetics with multielectron transfer processing. Polymeric photocatalysts have recently been developed for the OER, and substantial progress has been realized in this emerging research field. In this Review, the focus is on the photocatalytic technologies and materials of polymeric photocatalysts for the OER. Two practical systems, namely, particle suspension systems and film-based photoelectrochemical systems, form two main sections. The concept is reviewed in terms of thermodynamics and kinetics, and polymeric photocatalysts are discussed based on three key characteristics, namely, light absorption, charge separation and transfer, and surface oxidation reactions. A satisfactory OER performance by polymeric photocatalysts will eventually offer a platform to achieve overall water splitting and other advanced applications in a cost-effective, sustainable, and renewable manner using solar energy.


Asunto(s)
Procesos Fotoquímicos , Polímeros , Catálisis , Luz , Iluminación , Oxígeno
2.
Nanotechnology ; 35(29)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38621372

RESUMEN

A hierarchical sea urchin-like hybrid metal oxide nanostructure of ZnO nanorods deposited on TiO2porous hollow hemispheres with a thin zinc titanate interface layer is specifically designed and synthesized to form a combined type I straddling and type II staggered junctions. The HHSs, synthesized by electrospinning, facilitate light trapping and scattering. The ZnO nanorods offer a large surface area for improved surface oxidation kinetics. The interface layer of zinc titanate (ZnTiO3) between the TiO2HHSs and ZnO nanorods regulates the charge separation in a closely coupled hierarchy structure of ZnO/ZnTiO3/TiO2. The synergistic effects of the improved light trapping, charge separation, and fast surface reaction kinetics result in a superior photoconversion efficiency of 1.07% for the photoelectrochemical water splitting with an outstanding photocurrent density of 2.8 mA cm-2at 1.23 V versus RHE.

3.
J Environ Sci (China) ; 140: 103-112, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331492

RESUMEN

Highly crystalline carbon nitride polymers have shown great opportunities in overall water photosplitting; however, their mission in light-driven CO2 conversion remains to be explored. In this work, crystalline carbon nitride (CCN) nanosheets of poly triazine imide (PTI) embedded with melon domains are fabricated by KCl/LiCl-mediated polycondensation of dicyandiamide, the surface of which is subsequently deposited with ultrafine WO3 nanoparticles to construct the CCN/WO3 heterostructure with a S-scheme interface. Systematic characterizations have been conducted to reveal the compositions and structures of the S-scheme CCN/WO3 hybrid, featuring strengthened optical capture, enhanced CO2 adsorption and activation, attractive textural properties, as well as spatial separation and directed movement of light-triggered charge carriers. Under mild conditions, the CCN/WO3 catalyst with optimized composition displays a high photocatalytic activity for reducing CO2 to CO in a rate of 23.0 µmol/hr (i.e., 2300 µmol/(hr·g)), which is about 7-fold that of pristine CCN, along with a high CO selectivity of 90.6% against H2 formation. Moreover, it also manifests high stability and fine reusability for the CO2 conversion reaction. The CO2 adsorption and conversion processes on the catalyst are monitored by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), identifying the crucial intermediates of CO2*-, COOH* and CO*, which integrated with the results of performance evaluation proposes the possible CO2 reduction mechanism.


Asunto(s)
Dióxido de Carbono , Nanopartículas , Nitrilos , Adsorción , Imidas
4.
J Am Chem Soc ; 145(50): 27415-27423, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38078702

RESUMEN

Synchronized conversion of CO2 and H2O into hydrocarbons and oxygen via infrared-ignited photocatalysis remains a challenge. Herein, the hydroxyl-coordinated single-site Ru is anchored precisely on the metallic TiN surface by a NaBH4/NaOH reforming method to construct an infrared-responsive HO-Ru/TiN photocatalyst. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (ac-HAADF-STEM) and X-ray absorption spectroscopy (XAS) confirm the atomic distribution of the Ru species. XAS and density functional theory (DFT) calculations unveil the formation of surface HO-RuN5-Ti Lewis pair sites, which achieves efficient CO2 polarization/activation via dual coordination with the C and O atoms of CO2 on HO-Ru/TiN. Also, implanting the Ru species on the TiN surface powerfully boosts the separation and transfer of photoinduced charges. Under infrared irradiation, the HO-Ru/TiN catalyst shows a superior CO2-to-CO transformation activity coupled with H2O oxidation to release O2, and the CO2 reduction rate can further be promoted by about 3-fold under simulated sunlight. With the key reaction intermediates determined by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and predicted by DFT simulations, a possible photoredox mechanism of the CO2 reduction system is proposed.

5.
Phys Chem Chem Phys ; 25(16): 11253-11260, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37060133

RESUMEN

Photocatalytic water splitting has recently received increasing attention as a green fuel source. The controlled nano-geometry of the photocatalytic material can improve light harvesting. In this study, as a proof of concept, hollow hemisphere (HHS)-based films of TiO2 material were created by a conventional electrospray method and subsequently applied for photoelectrochemical (PEC) water splitting. To preserve the morphology of the HHS structure, a hydrolysis precipitation phase separation method (HPPS) was developed. As a result, the TiO2 HHS-based thin films presented a maximum PEC water splitting efficiency of ca. 0.31%, almost two times that of the photoanode formed by TiO2 nanoparticle-based films (P25). The unique morphology and porous structure of the TiO2 HHSs with reduced charge recombination and improved light absorption are responsible for the enhanced PEC performance. Light scattering by the HHS was demonstrated with total reflection internal fluorescence microscopy (TRIFM), revealing the unique light trapping phenomenon within the HHS cavity. This work paves the way for the rational design of nanostructures for photocatalysis in fields including energy, environment, and organosynthesis.

6.
Angew Chem Int Ed Engl ; 62(33): e202307236, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37349960

RESUMEN

Earth's primordial atmosphere was rich in ammonia and methane. To understand the evolution of the atmosphere, these two gases were used to make photoredox-active nitrogen-doped carbon (NDC). Photocatalysts such as NDC might play an important role in the development of geological and atmospheric chemistry during the Archean era. This study describes the synthesis of NDC directly from NH3 and CH4 gases. The photocatalyst product can be used to selectively synthesize imines by photo-oxidization of amines, producing H2 O2 simultaneously in the photoreduction reaction. Our findings shed light on the chemical evolution of the Earth.

7.
Angew Chem Int Ed Engl ; 59(42): 18695-18700, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32596879

RESUMEN

The first examples of linear conjugated organic polymer photocatalysts that produce oxygen from water after loading with cobalt and in the presence of an electron scavenger are reported. The oxygen evolution rates, which are higher than for related organic materials, can be rationalized by a combination of the thermodynamic driving force for water oxidation, the light absorption of the polymer, and the aqueous dispersibility of the relatively hydrophilic polymer particles. We also used transient absorption spectroscopy to study the best performing system and we found that fast oxidative quenching of the exciton occurs (picoseconds) in the presence of an electron scavenger, minimizing recombination.

8.
Chemistry ; 25(72): 16676-16682, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31652376

RESUMEN

A versatile synthetic strategy for the preparation of multimetallic oxynitrides has been designed and here exemplarily discussed considering the preparation of nanoscaled zinc-gallium oxynitrides and zinc-gallium-indium oxynitrides, two important photocatalysts of new generation, which proved to be active in key energy related processes from pollutant decomposition to overall water splitting. The synthesis presented here allows the preparation of small nanoparticles (less than 20 nm in average diameter), well-defined in size and shape, yet highly crystalline and with the highest surface area reported so far (up to 80 m2 g-1 ). X-ray diffraction studies show that the final material is not a mixture of single oxides but a distinctive compound. The photocatalytic properties of the oxynitrides have been tested towards the decomposition of an organic dye (as a model reaction for the decomposition of air pollutants), showing better photocatalytic performances than the corresponding pure phases (reaction constant 0.22 h-1 ), whereas almost no reaction was observed in absence of catalyst or in the dark. The photocatalysts have been also tested for H2 evolution (semi-reaction of the water splitting process) with results comparable to the best literature values but leaving room for further improvement.

9.
Angew Chem Int Ed Engl ; 58(18): 6033-6037, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30861621

RESUMEN

Borocarbonitride (BCN) is a new type of photocatalyst, but bulk BCN shows a large band gap, and low surface area, and moderate activity for photocatalysis. Here, a three-dimensional (3D) porous ceramic BCN aerogel was developed as an effective photocatalyst for relevant reactions. The unique structures endow the aerogel with an adjustable band gap and a high surface area, excellent stability, and improved crystallinity, which accelerates the separation and transfer of electron-hole pairs and promotes catalytic kinetics, thus enhancing the performance of photocatalytic reactions for hydrogen generation and carbon dioxide reduction. This work supplies a low-cost, convenient and green synthesis method for building ceramic aerogels, and it provides a simple colloid chemistry strategy combined with boron-containing compounds to facilitate further innovative breakthroughs in the novel ceramic aerogel materials design and development in the field of catalysis.

10.
Angew Chem Int Ed Engl ; 57(2): 470-474, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29168279

RESUMEN

Conjugated polymers (CPs) are emerging and appealing light harvesters for photocatalytic water splitting owing to their adjustable band gap and facile processing. Herein, we report an advanced mild synthesis of three conjugated triazine-based polymers (CTPs) with different chain lengths by increasing the quantity of electron-donating benzyl units in the backbone. Varying the chain length of the CTPs modulates their electronic, optical, and redox properties, resulting in an enhanced performance for photocatalytic oxygen evolution, which is the more challenging half-reaction of water splitting owing to the sluggish reaction kinetics. Our results could stimulate interest in these functional polymers where a molecular engineering strategy enables the production of suitable semiconductor redox energetics for oxygenic photosynthesis.

11.
Angew Chem Int Ed Engl ; 57(31): 9749-9753, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29901252

RESUMEN

Polymeric carbon nitride (PCN) photosensitizers are proposed replacements for their inorganic counterparts in solar-to-fuel conversion via photoelectrochemical water splitting. However, intense charge recombination, primarily because of surface defects, limits the use of PCN in PEC systems. Now, photoanodes are designed by coating PCN films onto highly conductive yttrium-doped zinc oxide (Y:ZnO) nanorods (NRs) serving as charge collectors. The generation of charge carriers can therefore be promoted by this type II alignment. The charge collectors would be kept nearby for charge separation and transport to be used in the interfacial redox reactions. The photocurrent density of the polymer electrode is improved to 0.4 mA cm-2 at 1.23 V vs. the reversible hydrogen electrode in a Na2 SO4 electrolyte solution under AM 1.5 illumination. The result reveals a more than 50-fold enhancement over the PCN films achieved by powder; the efficiency can be preserved at 95 % for 160 minutes.

12.
Angew Chem Int Ed Engl ; 57(28): 8729-8733, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29797759

RESUMEN

Natural photosynthesis serves as a model for energy and chemical conversions, and motivates the search of artificial systems that mimic nature's energy- and electron-transfer chains. However, bioinspired systems often suffer from the partial or even large loss of the charge separation state, and show moderate activity owing to the fundamentally different features of the multiple compounds. Herein, a selenium and cyanamide-functionalized heptazine-based melon (DA-HM) is designed as a unique bioinspired donor-acceptor (D-A) light harvester. The combination of the photosystem and electron shuttle in a single species, with both n- and p-type conductivities, and extended spectral absorption, endows DA-HM with a high efficiency in the transfer and separation of photoexcited charge carriers, resulting in photochemical activity. This work presents a unique conjugated polymeric system that shows great potential for solar-to-chemical conversion by artificial photosynthesis.

13.
Anal Chem ; 89(2): 1382-1388, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28194984

RESUMEN

A method for signal enhancement utilizing stacked magnets was introduced into high-resolution radio frequency glow discharge-mass spectrometry (rf-GD-MS) for significantly improved analysis of inorganic materials. Compared to the block magnet, the stacked magnets method was able to achieve 50-59% signal enhancement for typical elements in Y2O3, BSO, and BTN samples. The results indicated that signal was enhanced as the increase of discharge pressure from 1.3 to 8.0 mPa, the increase of rf-power from 10 to 50 W with a frequency of 13.56 MHz, the decrease of sample thickness, and the increase of number of stacked magnets. The possible mechanism for the signal enhancement was further probed using the software "Mechanical APDL (ANSYS) 14.0". It was found that the distinct oscillated magnetic field distribution from the stacked magnets was responsible for signal enhancement, which could extend the movement trajectories of electrons and increase the collisions between the electrons and neutral particles to increase the ionization efficiency. Two NIST samples were used for the validation of the method, and the results suggested that relative errors were within 13% and detection limit for six transverse stacked magnets could reach as low as 0.0082 µg g-1. Additionally, the stability of the method was also studied. RSD within 15% of the elements in three nonconducting samples could be obtained during the sputtering process. Together, the results showed that the signal enhancement method with stacked magnets could offer great promises in providing a sensitive, stable, and facile solution for analyzing the nonconducting materials.

14.
Nanotechnology ; 28(35): 355402, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28660855

RESUMEN

An ultra rapid growth method for vertically aligned ZnO nanorod (NR) thin films on metal meshes was developed using a direct heating synthesis technique. A typical NR growth rate of 10 µm h-1 was achieved. The effects of the applied heating power and growth duration on the morphologies of ZnO nanostructures were examined. High density surface defects were formed on the ZnO NRs, which is responsible for slow charge recombination and high efficiency in the photoelectrochemical (PEC) water splitting process. The light absorption for a photoanode was significantly improved by light trapping using a 3D stacked metal mesh photoanode structure. With the internal reflection between the stacked photoanodes, the final light leakage is minimised. The light absorption in the stacked photoanode is improved without restricting the charge transportation. In comparison with a single mesh photoanode and a chemical bath deposition grown flat photoanode, the PEC water splitting efficiency from the stacked photoanode was increased by a factor of 2.6 and 6.1 respectively.

15.
Angew Chem Int Ed Engl ; 56(49): 15506-15518, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28872779

RESUMEN

Metal-free catalysts have distinct advantages over metal and metal oxide catalysts, such as lower cost as well as higher reliability and sustainability. Among the nonmetal compounds used in catalysis, boron-containing compounds with a few unique properties have been developed. In this Minireview, the recent advances in the field of boron-containing metal-free catalysts are presented, including binary and ternary boron-containing catalytic materials. Additionally, the three main applications in catalysis are considered, namely, electrocatalysis, thermal catalysis, and photocatalysis, with the role of boron discussed in depth for each specific catalytic application. Boron-containing compounds could have a substantial impact on the field of metal-free catalysts in the future.

16.
Angew Chem Int Ed Engl ; 56(14): 3992-3996, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28247456

RESUMEN

The delamination of layered crystals that produces single or few-layered nanosheets while enabling exotic physical and chemical properties, particularly for semiconductor functions in optoelectronic applications, remains a challenge. Here, we report a facile and green approach to prepare few-layered polymeric carbon nitride (PCN) semiconductors by a one-step carbon/nitrogen steam reforming reaction. Bulky PCN, obtained from typical precursors including urea, melamine, dicyandiamide, and thiourea, are exfoliated into few-layered nanosheets, while engineering its surface carbon vacancies. The unique sheet structures with strengthened surface properties endow PCNs with more active sites, and an increased charge separation efficiency with a prolonged charge lifetime, drastically promoting their photoredox performance. After an assay of a H2 evolution reaction, an apparent quantum yield of 11.3 % at 405 nm was recorded for the PCN nanosheets, which is much higher than those of PCN nanosheets. This delamination method is expandable to other carbon-based 2D materials for advanced applications.

17.
ChemSusChem ; : e202400528, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716782

RESUMEN

Hydrogen peroxide (H2O2) plays a crucial role in various applications, such as green oxidation processes and the production of high-quality fuels. Currently, H2O2 is primarily manufactured using the indirect anthraquinone method, known for its significant energy consumption and the generation of intensive by-products. Extensive research has been conducted on the photocatalytic production of H2O2 via oxygen reduction reaction (ORR), with polymeric carbon nitride (PCN) emerging as a promising catalyst for this conversion. This review article is organized around two approaches. The first part main consists of the chemical optimization of the PCN structure, while the second focuses on the physical integration of PCN with other functional materials. The objective is to clarify the correlation between the physicochemical properties of PCN photocatalysts and their effectiveness in H2O2 production. Through a thorough review and analysis of the findings, this article seeks to stimulate new insights and achievements, not only in the domain of H2O2 production via ORR but also in other redox reactions.

18.
J Colloid Interface Sci ; 633: 323-332, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36459937

RESUMEN

Photoanodic hydrogen peroxide (H2O2) production via water oxidation is limited by low yields and poor selectivity. Herein, four variations of cobalt phosphides, including pristine CoP and Co2P crystals, and two mixed-phase cobalt phosphides (CoP/Co2P) with different ratios, were applied as co-catalysts on the BiVO4 (BVO) photoanode to improve H2O2 production. The optimal yield and selectivity were approximately 9.6 µmol‧h-1‧cm-2 and 25.2 % at a voltage bias of 1.7 V vs reversible hydrogen electrode (VRHE) under sunlight illumination, respectively. This performance is approximately 1.8 times that of pristine BVO photoanode. The roles of the Co and P sites were investigated. In particular, the Co site promotes the breaking of one HO bond in water to form OH• radicals, which is the rate-determining step in H2O2 production. The P site plays an important role in the desorption of H2O2 formed from the catalyst, which is responsible for the recovery of fresh catalytic sites. Among the four samples, Co2P exhibited the best performance for H2O2 production because it had the highest rate of OH• formation owing to its improved accumulation property. This study offers a rational design strategy for co-catalysts for photoanodic H2O2 production.

19.
Dalton Trans ; 52(32): 11030-11034, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37522808

RESUMEN

A nickel titanate (NTO) photocatalyst has been developed for the oxygen evolution reaction (OER) with an exceptionally broad light wavelength excitation ranging from visible to infrared. Specifically, by loading CoOx as the co-catalyst, the apparent quantum yields for the OER were ca. 2.2%, 1.0%, and 0.8% at wavelengths of 470, 760, and 850 nm, respectively. The achievements reveal that the NTO photocatalyst is highly efficient even under illumination with near-infrared (NIR) light, which confers the potential for highly efficient solar-driven oxidation reactions.

20.
J Colloid Interface Sci ; 607(Pt 1): 203-209, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34500419

RESUMEN

Water oxidation reaction (WOR) is the heart for overall water splitting owing to its sluggish kinetics. Herein, carbon quantum dots (CQDs) are studied as co-catalyst to promote WOR by loading them on NiTiO3 (NTO) photocatalyst. The performance can be obtained in a fold of 7 compared with pristine NTO in power-based photocatalytic system, and strong stability has received with preserving the output for at least 10 h. The CQDs have also demonstrated to load on NTO based photoanode for WOR, and a 6 times increasement has realized. In-situ characterizations have acquired to study the roles of CQDs for WOR and found that CQDs can facilitate the chemical adsorption of water molecules, and meanwhile promote the formation of hydroxyl radical as transition states of WOR. This demonstration presents a clue to understand the role of carbon in photocatalytic system to promote WOR and encourage its uses for advanced photoredox catalytic reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA