Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Bioorg Chem ; 146: 107320, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569323

RESUMEN

Spleen tyrosine kinase (Syk) plays a crucial role as a target for allergy treatment due to its involvement in immunoreceptor signaling. The purpose of this study was to identify natural inhibitors of Syk and assess their effects on the IgE-mediated allergic response in mast cells and ICR mice. A list of eight compounds was selected based on pharmacophore and molecular docking, showing potential inhibitory effects through virtual screening. Among these compounds, sophoraflavanone G (SFG) was found to inhibit Syk activity in an enzymatic assay, with an IC50 value of 2.2 µM. To investigate the conformational dynamics of the SYK-SFG system, we performed molecular dynamics simulations. The stability of the binding between SFG and Syk was evaluated using root mean square deviation (RMSD) and root mean square fluctuation (RMSF). In RBL-2H3 cells, SFG demonstrated a dose-dependent suppression of IgE/BSA-induced mast cell degranulation, with no significant cytotoxicity observed at concentrations below 10.0 µM within 24 h. Furthermore, SFG reduced the production of TNF-α and IL-4 in RBL-2H3 cells. Mechanistic investigations revealed that SFG inhibited downstream signaling proteins, including phospholipase Cγ1 (PLCγ1), as well as mitogen-activated protein kinases (AKT, Erk1/2, p38, and JNK), in mast cells in a dose-dependent manner. Passive cutaneous anaphylaxis (PCA) experiments demonstrated that SFG could reduce ear swelling, mast cell degranulation, and the expression of COX-2 and IL-4. Overall, our findings identify naturally occurring SFG as a direct inhibitor of Syk that effectively suppresses mast cell degranulation both in vitro and in vivo.


Asunto(s)
Interleucina-4 , Mastocitos , Ratones , Animales , Interleucina-4/metabolismo , Interleucina-4/farmacología , Mastocitos/metabolismo , Anafilaxis Cutánea Pasiva , Simulación del Acoplamiento Molecular , Inmunoglobulina E/metabolismo , Inmunoglobulina E/farmacología , Ratones Endogámicos ICR , Ratones Endogámicos BALB C
2.
Planta Med ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38838717

RESUMEN

Thrombin is a crucial enzyme in the coagulation cascade, and inhibitors of thrombin have been extensively studied as potential antithrombotic agents. The objective of this study was to identify natural inhibitors of thrombin from Panax notoginseng and evaluate their biological activity in vitro and binding characteristics. A combined approach involving molecular docking, thrombin inhibition assays, surface plasmon resonance, and molecular dynamics simulation was utilized to identify natural thrombin inhibitors. The results demonstrated that panaxatriol directly inhibits thrombin, with an IC50 of 10.3 µM. Binding studies using surface plasmon resonance revealed that panaxatriol interacts with thrombin, with a KD value of 7.8 µM. Molecular dynamics analysis indicated that the thrombin-panaxatriol system reached equilibrium rapidly with minimal fluctuations, and the calculated binding free energy was - 23.8 kcal/mol. The interaction between panaxatriol and thrombin involves the amino acid residues Glu146, Glu192, Gly216, Gly219, Tyr60A, and Trp60D. This interaction provides a mechanistic basis for further optimizing panaxatriol as a thrombin inhibitor. Our study has shown that panaxatriol serves as a direct thrombin inhibitor, laying the groundwork for further research and development of novel thrombin inhibitors.

3.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792165

RESUMEN

The objective of this study was to identify multiple alkaloids in Coptis chinensis that demonstrate inhibitory activity against DPP-4 and systematically evaluate their activity and binding characteristics. A combined strategy that included molecular docking, a DPP-4 inhibition assay, surface plasmon resonance (SPR), and a molecular dynamics simulation technique was employed. The results showed that nine alkaloids in Coptis chinensis directly inhibited DPP-4, with IC50 values of 3.44-53.73 µM. SPR-based binding studies revealed that these alkaloids display rapid binding and dissociation characteristics when interacting with DPP-4, with KD values ranging from 8.11 to 29.97 µM. A molecular dynamics analysis revealed that equilibrium was rapidly reached by nine DPP-4-ligand systems with minimal fluctuations, while binding free energy calculations showed that the ∆Gbind values for the nine test compounds ranged from -31.84 to -16.06 kcal/mol. The most important forces for the binding of these alkaloids with DPP-4 are electrostatic interactions and van der Waals forces. Various important amino acid residues, such as Arg125, His126, Phe357, Arg358, and Tyr547, were involved in the inhibition of DPP-4 by the compounds, revealing a mechanistic basis for the further optimization of these alkaloids as DPP-4 inhibitors. This study confirmed nine alkaloids as direct inhibitors of DPP-4 and characterized their binding features, thereby providing a basis for further research and development on novel DPP-4 inhibitors.


Asunto(s)
Alcaloides , Coptis , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Coptis/química , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Alcaloides/química , Alcaloides/farmacología , Unión Proteica , Humanos , Sitios de Unión , Resonancia por Plasmón de Superficie , Descubrimiento de Drogas/métodos
4.
Arch Virol ; 164(5): 1287-1295, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30859476

RESUMEN

Since 2010, continual outbreaks of highly virulent variants of porcine epidemic diarrhea virus (PEDV) belonging to genotype GII have led to serious economic losses for the Chinese swine industry. To better understand the biological characteristics and pathogenicity of the current prevalent Chinese PEDV field strains, in this study, a highly virulent Chinese genotype GIIa PEDV strain, CH/HBXT/2018, was isolated and serially propagated using Vero cells. Sequencing and phylogenetic analysis showed that strain CH/HBXT/2018 contained novel insertion and deletion mutations in the S gene region relative to the classical strain and belonged to the genotype GIIa, similar to other recently isolated PEDV strains from China and the United States. Pig infection studies indicated that the CH/HBXT/2018 strain was highly virulent in suckling piglets, and the median pig diarrhea dose (PDD50) was 8.63 log10PDD50/3 mL at 7 days postinfection (DPI). The results of the present study are important for future PEDV challenge studies and the development of new PEDV vaccines based on prevalent field strains for the prevention and control of PED in China.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Línea Celular , China , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Brotes de Enfermedades , Genotipo , Mutagénesis Insercional/genética , Filogenia , Virus de la Diarrea Epidémica Porcina/clasificación , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Eliminación de Secuencia/genética , Porcinos , Enfermedades de los Porcinos/virología , Células Vero , Vacunas Virales/inmunología , Virulencia/genética
5.
Appl Microbiol Biotechnol ; 103(8): 3367-3379, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30888465

RESUMEN

Many recent studies have shown that flagellin fused to heterologous antigens can induce significantly enhanced humoral and cellular immune responses through its adjuvant activity. Therefore, in this study, two key B cell epitopes and a truncated VP1 (ΔVP1) protein from foot-and-mouth disease virus (FMDV) were expressed as flagellin fusion proteins in different patterns. Specifically, ΔVP1 and two duplicates of two key B cell epitopes (2×B1B2) were fused separately to the C-terminus of flagellin with a universal exogenous T cell epitope to construct FT (Flagellin-Truncated VP1) and FME (Flagellin-Multiple Epitopes). In addition, the D3 domain of flagellin was replaced by ΔVP1 in FME, yielding FTME (Flagellin-Truncated VP1-Multiple Epitopes). The immunogenicity and protective efficacy of the three fusion proteins as novel FMDV vaccine candidates were evaluated. The results showed that FT, FME, and FTME elicited significant FMDV-specific IgG responses at 10 µg/dose compared with the mock group (P < 0.05), with FTME producing the highest response. No significant differences in the antibody response to FTME were observed between different immunization routes or among adjuvants (ISA-206, poly(I·C), MPLA, and CpG-ODN) in mice. In addition, at 30 µg/dose, all three fusion proteins significantly induced neutralizing antibody production and upregulated the levels of some cytokines, including TNF-α, IFN-γ, and IL-12, in guinea pigs. Importantly, all three fusion proteins provided effective protective immunity against FMDV challenge in guinea pigs, though different protection rates were found. The results presented in this study indicate that the FTME fusion protein is a promising novel vaccine candidate for the future prevention and control of foot-and-mouth disease.


Asunto(s)
Flagelina/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Vacunación/métodos , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos Virales/genética , Antígenos Virales/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Citocinas/sangre , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Flagelina/genética , Virus de la Fiebre Aftosa/genética , Cobayas , Masculino , Ratones Endogámicos BALB C , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
6.
Microb Pathog ; 112: 111-116, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28942178

RESUMEN

Foot-and-mouth disease virus (FMDV) is a picornavirus that causes an economically significant disease in cattle and swine. Replication of FMDV is dependent on both viral proteins and cellular factors. Nonstructural protein 2B of FMDV plays multiple roles during viral infection and replication. We investigated the roles of 2B in virus-host interactions by constructing a cDNA library obtained from FMDV-infected swine tissues, and used a split-ubiquitin-based yeast two-hybrid system to identify host proteins that interacted with 2B. We found that 2B interacted with amino acids 208-437 in the C-terminal region of the eEF1G subunit of eukaryotic elongation factor 1, which is essential for protein synthesis. The 2B-eEF1G interaction was confirmed by co-immunoprecipitation of 2B and eEF1G in HEK293T cells. Collectively, our results suggest that eEF1G interacts with the 2B protein of FMDV. The identified 2B interaction partner may help to elucidate the mechanisms of FMDV infection and replication.


Asunto(s)
Virus de la Fiebre Aftosa/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Dominios y Motivos de Interacción de Proteínas , Técnicas del Sistema de Dos Híbridos , Proteínas no Estructurales Virales/aislamiento & purificación , Animales , Modelos Animales de Enfermedad , Fiebre Aftosa , Virus de la Fiebre Aftosa/patogenicidad , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inmunoprecipitación/métodos , Unión Proteica , Porcinos , Proteínas Virales , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral
7.
Virol J ; 14(1): 194, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-29017599

RESUMEN

BACKGROUND: Large-scale outbreaks of porcine epidemic diarrhea (PED) have re-emerged in China in recent years. However, little is known about the genetic diversity and molecular epidemiology of field strains of PED virus (PEDV) in China in 2016-2017. To address this issue, in this study, 116 diarrhea samples were collected from pig farms in 6 Chinese provinces in 2016-2017 and were detected using PCR for main porcine enteric pathogens, including PEDV, porcine deltacoronavirus (PDCoV), porcine transmissible gastroenteritis virus (TGEV) and porcine kobuvirus (PKV). In addition, the complete S genes from 11 representative PEDV strains were sequenced and analyzed. RESULTS: PCR detection showed that 52.6% (61/116) of these samples were positive for PEDV. Furthermore, sequencing results for the spike (S) genes from 11 of the epidemic PEDV strains showed 93-94% nucleotide identity and 92-93% amino acid identity with the classical CV777 strain. Compared with the CV777 vaccine strain, these strains had an insertion (A133), a deletion (G155), and a continuous 4-amino-acid insertion (56NNTN59) in the S1 region. Phylogenetic analysis based on the S gene indicated that the 11 assessed PEDV strains were genetically diverse and clustered into the G2 group. These results demonstrate that the epidemic strains of PEDV in China in 2016-2017 are mainly virulent strains that belong to the G2 group and genetically differ from the vaccine strain. Importantly, this is the first report that the samples collected in Hainan Province were positive for PEDV (59.2%, 25/42). CONCLUSIONS: To our knowledge, this article presents the first report of a virulent PEDV strain isolated from Hainan Island, China. The results of this study will contribute to the understanding of the epidemiology and genetic characteristics of PEDV in China.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Variación Genética , Filogenia , Virus de la Diarrea Epidémica Porcina/clasificación , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Animales , China/epidemiología , Coronavirus/aislamiento & purificación , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Brotes de Enfermedades , Kobuvirus/aislamiento & purificación , Epidemiología Molecular , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/veterinaria , Infecciones por Picornaviridae/virología , Reacción en Cadena de la Polimerasa , Virus de la Diarrea Epidémica Porcina/genética , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Virus de la Gastroenteritis Transmisible/aislamiento & purificación
8.
Appl Microbiol Biotechnol ; 101(12): 4905-4914, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28365796

RESUMEN

Foot-and-mouth disease (FMD) is an acute and highly contagious disease caused by foot-and-mouth disease virus (FMDV) that can affect cloven-hoofed animal species, leading to severe economic losses worldwide. Therefore, the development of a safe and effective new vaccine to prevent and control FMD is both urgent and necessary. In this study, we developed a chimeric virus-like particle (VLP) vaccine candidate for serotype O FMDV and evaluated its protective immunity in guinea pigs. Chimeric VLPs were formed by the antigenic structural protein VP1 from serotype O and segments of the viral capsid proteins (VP2, VP3, and VP4) from serotype A. The chimeric VLPs elicited significant humoral and cellular immune responses with a higher level of anti-FMDV antibodies and cytokines than the control group. Furthermore, four of the five guinea pigs vaccinated with the chimeric VLPs were completely protected against challenge with 100 50% guinea pig infectious doses (GPID50) of the virulent FMDV strain O/MAY98. These data suggest that chimeric VLPs are potential candidates for the development of new vaccines against FMDV.


Asunto(s)
Proteínas de la Cápside/genética , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Baculoviridae/genética , Proteínas de la Cápside/inmunología , Cobayas , Serogrupo , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas Virales/administración & dosificación
9.
Appl Microbiol Biotechnol ; 99(3): 1389-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25381487

RESUMEN

Foot-and-mouth disease (FMD) remains a major threat to livestock worldwide, especially in developing countries. To improve the efficacy of vaccination against FMD, various types of vaccines have been developed, including synthetic peptide vaccines. We designed three synthetic peptide vaccines, 59 to 87 aa in size, based on immunogenic epitopes in the VP1, 3A, and 3D proteins of the A/HuBWH/CHA/2009 strain of the foot-and-mouth disease virus (FMDV), corresponding to amino acid positions 129 to 169 of VP1, 21 to 35 of 3A, and 346 to 370 of 3D. The efficacies of the vaccines were evaluated in cattle and guinea pigs challenged with serotype-A FMDV. All of the vaccines elicited the production of virus-neutralizing antibodies. The PB peptide, which contained sequences corresponding to positions 129 to 169 of V P1 and 346 to 370 of 3D, demonstrated the highest levels of immunogenicity and immunoprotection against FMDV. Two doses of 50 µg of the synthetic PB peptide vaccine provided 100% protection against FMDV infection in guinea pigs, and a single dose of 100 µg provided 60% protection in cattle. These findings provide empirical data for facilitating the development of synthetic peptide vaccines against FMD.


Asunto(s)
Proteínas de la Cápside/administración & dosificación , Enfermedades de los Bovinos/prevención & control , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Bovinos , Enfermedades de los Bovinos/inmunología , Enfermedades de los Bovinos/virología , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/genética , Cobayas , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología
10.
ScientificWorldJournal ; 2015: 734253, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793223

RESUMEN

Foot-and-mouth disease virus (FMDV) serotype Asia 1 was mostly endemic in Asia and then was responsible for economically important viral disease of cloven-hoofed animals, but the study on its selection and evolutionary process is comparatively rare. In this study, we characterized 377 isolates from Asia collected up until 2012, including four vaccine strains. Maximum likelihood analysis suggested that the strains circulating in Asia were classified into 8 different groups (groups I-VIII) or were unclassified (viruses collected before 2000). On the basis of divergence time analyses, we infer that the TMRCA of Asia 1 virus existed approximately 86.29 years ago. The result suggested that the virus had a high mutation rate (5.745 × 10(-3) substitutions/site/year) in comparison to the other serotypes of FMDV VP1 gene. Furthermore, the structural protein VP1 was under lower selection pressure and the positive selection occurred at many sites, and four codons (positions 141, 146, 151, and 169) were located in known critical antigenic residues. The remaining sites were not located in known functional regions and were moderately conserved, and the reason for supporting all sites under positive selection remains to be elucidated because the power of these analyses was largely unknown.


Asunto(s)
Proteínas de la Cápside/genética , Evolución Molecular , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/genética , Genes Virales , Animales , Asia , Bases de Datos Genéticas , Virus de la Fiebre Aftosa/aislamiento & purificación , Funciones de Verosimilitud , Filogenia , Serotipificación , Factores de Tiempo
11.
Wei Sheng Wu Xue Bao ; 53(6): 596-607, 2013 Jun 04.
Artículo en Zh | MEDLINE | ID: mdl-24028062

RESUMEN

OBJECTIVE: We developed a synthetic vaccine against foot-and-mouth disease type A. METHODS: We studied two peptide-based vaccines containing residues 131 to 159 of VP1, 20 to 35 of VP4, 21 to 35 of 3A and 29 to 42 of 3B of the AF/72 strain of foot-and-mouth disease virus (FMDV) coupled with a CpG oligodeoxynucleotide (5'-TCGCGAACGTTCGCCCGATCGTCGGTA-3') in guinea pigs. We assayed the FMDV-specific IgG level, serum neutralizing antibody titer, splenic lymphocytes proliferative capacity and peripheral blood T lymphocyte CD4-CD8 subsets distribution. RESULTS: The data show that high dose did not ensure a good immunity. In our study, 8% (4/5) of peptide 364-2.5-inoculated guinea pigs (2.5 microg of peptide 364 per animal) were protected against AF/72 strain challenge, while the protection ratio from other peptide-immunized groups was lower except the inactivated vaccine-inoculated group which showed a full protection. Our results also indicated that the stimulatory ability of CD4+ T lymphocyte response played a key role in evaluating effective FMDV vaccine. The highest percentage of CD4+ T lymphocyte was 36.6% appeared in inactivated vaccine-immunized guinea pigs, the second was 33.7% in peptide 364-2.5-vaccinated group, whereas the remaining ranged from 18.1% to 27.7%. There was no obvious relation between CD8+ T cells and anti-FMDV infection; our data showed that the CD4/CD8 ratio was not always appropriate for assessing the immune system status. CONCLUSION: In general, we not only designed an effective vaccine against FMDV type A, but also discovered some useful information of humoral and cellular responses induced by foot-and-mouth disease vaccines.


Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Femenino , Fiebre Aftosa/prevención & control , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/genética , Cobayas , Activación de Linfocitos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
12.
ACS Omega ; 8(11): 9843-9853, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36969442

RESUMEN

This study presents a unique and straightforward room temperature-based wet-chemical technique for the self-seeding preparation of three-dimensional (3D) hierarchically branched rutile TiO2, abbreviated HTs, employing titanate nanotubes as the precursor. In the course of the synthesis, spindle-like rutile TiO2 and the intermediate anatase phase were first obtained through a dissolution/precipitation/recrystallization process, with the former serving as the substrates and the latter as the nucleation precursor to growing the branches, which finally gave birth to the production of 3D HTs nanostructures. When the specifically created hierarchical TiO2 was used as the photoanode in dye-sensitized solar cells (DSCs), a significantly improved power conversion efficiency (PCE) of 8.32% was achieved, outperforming a typical TiO2 (P25) nanoparticle-based reference cell (η = 5.97%) under the same film thickness. The effective combination of robust light scattering, substantial dye loading, and fast electron transport for the HTs nanostructures is responsible for the remarkable performance.

13.
ACS Omega ; 8(47): 44578-44585, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046349

RESUMEN

Synthesizing SnO2 composite nanostructures via a facile one-step method has been proven to be a great challenge. By adjusting operating variables, such as the reaction solution's pH and solvent type, several SnO2 nanostructures, in particular, a function-matching SnO2 hybrid structure composed of irregular zero-dimensional nanoparticles (NPs) and two-dimensional nanosheets (NSs), could be created. The as-prepared SnO2 composites were then characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and diffuse reflectance spectroscopy (DRS) to determine their physical properties. Dye-sensitized solar cells (DSCs) constructed with the resultant multifunctional SnO2 NPs/NSs composite exhibited the highest overall power conversion efficiency (PCE) of 5.16% among all products with a corresponding short-circuit current density of 18.6 mA/cm2 and an open-circuit voltage of 0.626 V. The improved performance can be attributed to the combined effects of each component in the composite, i.e., the intentionally introduced nanosheets provide desired electron transport and enhanced light scattering capability, while the nanoparticles retain their large surface area for efficient dye absorption.

14.
Virol J ; 9: 68, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22416942

RESUMEN

BACKGROUND: Analysis of codon usage can reveal much about the molecular evolution of the viruses. Nevertheless, little information about synonymous codon usage pattern of porcine circovirus (PCV) genome in the process of its evolution is available. In this study, to give a new understanding on the evolutionary characteristics of PCV and the effects of natural selection from its host on the codon usage pattern of the virus, Patterns and the key determinants of codon usage in PCV were examined. METHODS: We carried out comprehensive analysis on codon usage pattern in the PCV genome, by calculating relative synonymous codon usage (RSCU), effective number of codons (ENC), dinucleotides and nucleic acid content of the PCV genome. RESULTS: PCV genomes have relatively much lower content of GC and codon preference, this result shows that nucleotide constraints have a major impact on its synonymous codon usage. The results of the correspondence analysis indicate codon usage patterns of PCV of various genotypes, various subgenotypes changed greatly, and significant differences in codon usage patterns of Each virus of Circoviridae.There is much comparability between PCV and its host in their synonymous codon usage, suggesting that the natural selection pressure from the host factor also affect the codon usage patterns of PCV. In particular, PCV genotype II is in synonymous codon usage more similar to pig than to PCV genotype I, which may be one of the most important molecular mechanisms of PCV genotype II to cause disease. The calculations results of the relative abundance of dinucleotides indicate that the composition of dinucleotides also plays a key role in the variation found in synonymous codon usage in PCV. Furthermore, geographic factors, the general average hydrophobicity and the aromaticity may be related to the formation of codon usage patterns of PCV. CONCLUSION: The results of these studies suggest that synonymous codon usage pattern of PCV genome are the result of interaction between mutation pressure and natural selection from its host. The information from this study may not only have theoretical value in understanding the characteristics of synonymous codon usage in PCV genomes, but also have significant value for the molecular evolution of PCV.


Asunto(s)
Circovirus/genética , Codón , Genoma Viral , Animales , Composición de Base , Evolución Molecular , Interacciones Huésped-Patógeno
15.
Virol J ; 8: 426, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21896206

RESUMEN

BACKGROUND: Foot-and-mouth disease (FMD) is a highly contagious and devastating disease affecting livestock that causes significant financial losses. Therefore, safer and more effective vaccines are required against Foot-and-mouth disease virus(FMDV). The purpose of this study is to screen and identify an H-2d restricted T cell epitope from the virus structural protein VP1, which is present with FMD. We therefore provide a method and basis for studying a specific FMDV T cell epitope. RESULTS: A codon-optimized expression method was adopted for effective expression of VP1 protein in colon bacillus. We used foot-and-mouth disease standard positive serum was used for Western blot detection of its immunogenicity. The VP1 protein was used for immunizing BALB/c mice, and spleen lymphocytes were isolated. Then, a common in vitro training stimulus was conducted for potential H-2Dd, H-2Kd and H-2Ld restricted T cell epitope on VP1 proteins that were predicted and synthesized by using a bioinformatics method. The H-2Kd restricted T cell epitope pK1 (AYHKGPFTRL) and the H-2Dd restricted T cell epitope pD7 (GFIMDRFVKI) were identified using lymphocyte proliferation assays and IFN-γ ELISPOT experiments. CONCLUSIONS: The results of this study lay foundation for studying the FMDV immune process, vaccine development, among other things. These results also showed that, to identify viral T cell epitopes, the combined application of bioinformatics and molecular biology methods is effective.


Asunto(s)
Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Epítopos de Linfocito T/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Linfocitos/inmunología , Péptidos/inmunología , Vacunación , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/química , Antígenos Virales/genética , Western Blotting , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Bovinos , Proliferación Celular , Biología Computacional , Ensayo de Immunospot Ligado a Enzimas , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Femenino , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/química , Virus de la Fiebre Aftosa/genética , Linfocitos/citología , Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Péptidos/administración & dosificación , Péptidos/síntesis química , Bazo/citología , Bazo/efectos de los fármacos , Bazo/inmunología
16.
RSC Adv ; 11(59): 37089-37102, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35496402

RESUMEN

Structure design of photocatalysts is highly desirable for taking full advantage of their abilities for H2 evolution. Herein, the highly-efficient TiO2{001}/g-C3N4 (TCN) heterostructures have been fabricated successfully via an in situ ethanol-thermal method. And the structure of g-C3N4 in the TCN heterostructures could be exfoliated from bulk g-C3N4 to nanosheets, nanocrystals and quantum dots with the increase of the synthetic temperature. Through detailed characterization, the structural evolution of g-C3N4 could be attributed to the enhanced temperature of the ethanol-thermal treatment with the shear effects of HF acid. As expected, the optimal TCN-2 heterostructure shows excellent photocatalytic H2 evolution efficiency (1.78 mmol h-1 g-1) under visible-light irradiation. Except for the formed built-in electric field, the significantly enhanced photocatalytic activity of TCN-2 could be ascribed to the enhanced crystallinity of TiO2{001} nanosheets and the formed g-C3N4 nanocrystals with large surface area, which could extend the visible light absorption, and expedite the transfer of photo-generated charge carriers further. Our work could provide guidance on designing TCN heterostructures with the desired structure for highly-efficient photocatalytic water splitting.

17.
Vet Microbiol ; 230: 278-282, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30827401

RESUMEN

Although highly virulent GII-genotype PEDV strains have become pandemic in the swine population worldwide, little is known about the differences in immunogenicity and cross-protective efficacy between the GIIa and GIIb subgenotypes. Hence, in the present study, we vaccinated suckling piglets with GIIa (CH/HBXT/2018) and GIIb (CH/HNPJ/2017) PEDV strain-based inactivated vaccine candidates and compared their immunogenicity and cross-protective efficacy. The results showed that both vaccine candidates induced high levels of PEDV-specific IgG antibodies and IFN-γ and reduced the levels of neutralizing antibodies at 21 dpv in suckling piglets. The GIIa-based inactivated vaccine protected all piglets (8/8) against virulent homologous and heterologous virus challenge, while the GIIb strain-based inactivated vaccine protected only 2/4 and 1/4 piglets against virulent homologous and heterologous virus challenge, respectively. Furthermore, antibodies against the GIIa and GIIb strains cross-reacted and cross-neutralized both strains in vitro. Taken together, the data presented in this study indicate that GIIa strain-based inactivated vaccine candidates are more promising than GIIb-based candidates for the development of an effective vaccine against the current highly virulent pandemic PEDV strains.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Coronavirus/veterinaria , Protección Cruzada/inmunología , Inmunogenicidad Vacunal , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Técnicas de Cultivo de Célula , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Genotipo , Inmunoglobulina G/sangre , Interferón gamma/inmunología , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/patogenicidad , Porcinos , Enfermedades de los Porcinos/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/administración & dosificación , Esparcimiento de Virus
18.
Nanomaterials (Basel) ; 9(7)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261653

RESUMEN

A facile one-pot approach was developed for the synthesis of ZnO nanorods (NRs)/nanoparticles (NPs) architectures with controllable morphologies. The concrete state of existence of NPs and NRs could rationally be controlled through reaction temperature manipulation, i.e., reactions occured at 120, 140, 160, and 180 °C without stirring resulted in orderly aligned NRs, disordered but connected NRs/NPs, and relatively dispersed NRs/NPs with different sizes and lengths, respectively. The as-obained ZnO nanostructures were then applied to construct photoanodes of dye-sensitized solar cells, and the thicknesses of the resultant films were controlled for performance optimization. Under an optimized condition (i.e., with a film thickness of 14.7 µm), the device fabricated with the material synthesized at 160 °C exhibited the highest conversion efficiency of 4.30% with an elevated current density of 14.50 mA·cm-2 and an open circuit voltage of 0.567 V. The enhanced performance could be attributed to the coordination effects of the significantly enhanced dye absorption capability arising from the introduced NPs and the intrinsic fast electron transport property of NRs as confirmed by electrochemical impedance spectroscopy (EIS) and ultraviolet-visible (UV-vis) absorption.

19.
Virus Res ; 259: 18-27, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30342075

RESUMEN

Since October 2010, severe porcine epidemic diarrhea (PED) outbreaks caused by highly virulent PED virus (PEDV) strains have occurred continuously in the Chinese pig population and caused considerable economic losses. Although PEDV vaccines based on classical PEDV strains have been widely used in China in recent years, the morbidity and mortality in piglets remain high. Therefore, virulent genotype GII PEDV strains that are prevalent in the field should be isolated and used to develop next-generation vaccines. In the present study, a Chinese virulent genotype GIIb PEDV strain, CH/HNPJ/2017, was serially propagated in Vero cells for up to 90 passages. The S genes contained typical insertions and deletions that were also found in other recently isolated highly virulent PEDV strains from China and other countries and had two neighboring unique insertion mutations, which resulted in four amino acid changes in the S1 region of passages P10 and P60. Pig infection studies revealed that the CH/HNPJ/2017 strain was highly virulent in piglets, and the median pig diarrhea dose (PDD50) was 7.68 log10PDD50/3 mL. Furthermore, the cell-adapted CH/HNPJ/2017 strain elicited potent serum IgG and neutralizing antibody responses in immunized pigs when it was used as an inactivated vaccine candidate. In addition, the pigs that received the experimental inactivated vaccines were partially protected (3/5) against subsequent viral challenge. In brief, these data indicate that the CH/HNPJ/2017 strain is a promising candidate for developing a safe and effective PEDV vaccine in the future.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Genotipo , Virus de la Diarrea Epidémica Porcina/genética , Enfermedades de los Porcinos/virología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Diarrea/veterinaria , Interacciones Huésped-Patógeno/inmunología , Pruebas de Neutralización , Filogenia , Virus de la Diarrea Epidémica Porcina/clasificación , Virus de la Diarrea Epidémica Porcina/inmunología , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/prevención & control , Vacunas de Productos Inactivados/inmunología , Células Vero , Vacunas Virales/inmunología , Virulencia
20.
Vet Immunol Immunopathol ; 121(1-2): 83-90, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18006078

RESUMEN

The expression of recombinant antigens in transgenic plants is increasingly used as an alternative method of producing experimental immunogens. In this report, we describe the production of transgenic tomato plants that express the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease (FMDV). P1-2A3C was inserted into the plant binary vector, pBin438, and transformed into tomato plants using Agrobacterium tumefaciens strain, GV3101. The presence of P1-2A3C was confirmed by PCR, transcription was verified by RT-PCR, and recombinant protein expression was confirmed by sandwich-ELISA and Western blot analyses. Guinea pigs immunized intramuscularly with foliar extracts from P1-2A3C-transgenic tomato plants were found to develop a virus-specific antibody response against FMDV. Vaccinated guinea pigs were fully protected against a challenge infection, while guinea pigs injected with untransformed plant extracts failed to elicit an antibody response and were not protected against challenge. These results demonstrate that transgenic tomato plants expressing the FMDV structural polyprotein, P1-2A, and the protease, 3C, can be used as a source of recombinant antigen for vaccine production.


Asunto(s)
Cisteína Endopeptidasas/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Inmunización/métodos , Plantas Modificadas Genéticamente/química , Poliproteínas/inmunología , Proteínas Virales/inmunología , Proteasas Virales 3C , Animales , Anticuerpos Antivirales/sangre , Cisteína Endopeptidasas/genética , ADN Viral/genética , Ensayo de Inmunoadsorción Enzimática , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/genética , Cobayas , Solanum lycopersicum/química , Solanum lycopersicum/genética , Extractos Vegetales/inmunología , Extractos Vegetales/farmacología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Reacción en Cadena de la Polimerasa , Poliproteínas/genética , Distribución Aleatoria , Transcripción Genética , Transformación Genética , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA