Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 50(22): 11403-11, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22017386

RESUMEN

Two new complexes [Cu(I)(3)(L1)I(3)](n) (1, L1 = 2,5-bis(4-pyridyl)-1,3,4-oxadiazole) and [Cu(I)(3)(L2)I(2)](n) (2, L2 = 2,5-bis(4-pyridyl)-1,2,4-triazolate) are controllably formed by using aqueous ammonia to regulate the pH value of the reaction involving CuI and L1. Interestingly, L2 of 2 is in situ generated from the ring transform of L1 when increase the pH value of the reaction. 1 exhibits 2-D layer, while 2 shows 3-D MOFs with a novel 3-nodal 4,4,5-connected net topology of an unprecedented Point (Schlafli) symbol: (4·5(2)·6(2)·7)(5(4)·8(2))(4(3)·5·6(6)). Although both 1 and 2 are built of CuI and similar ligands, different arrangements of CuI chains and ligands endow them with different physical properties. 1 displays a strong pure red luminescence emission, while 2 is nonluminescent and shows a broad absorption band covering the whole UV-vis-NIR spectrum range. The emissive excited states of 1 and the charge transitions of the optical absorption for 2 are solved by DFT calculations.

2.
Inorg Chem ; 48(16): 7691-7, 2009 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-19591440

RESUMEN

Three novel microporous three-dimensional (3-D) metal-organic framework materials [ML](n) [M = Ni, Co, Cd; L = N,N'-bis(4-picolinoyl)hydrazine] were obtained from hydrothermal reactions. The organic ligand L was formed through the in situ ring-opening hydrolysis reaction of 2,5-bis(4-pyridyl)-1,3,4-oxadiazole with the assistance of metal ions. Single-crystal X-ray diffraction studies reveal that complexes 1-3 adopt 6-connected 3-D networks of distorted alpha-Po topology, which are built from non-interpenetrated (4,4) grids cross-linked by zigzag chains. These isomorphic complexes are all of high thermal stability, but some other physical properties are quite different because of their different metal centers. Antiferromagnetic exchange was observed between Ni(II) centers of complex 1, while ferromagnetic for Co(II) centers of complex 2. Complex 3 exhibits strong fluorescence emission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA