Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Enzyme Inhib Med Chem ; 38(1): 2201402, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37073528

RESUMEN

Vibrio cholerae causes life-threatening infections in low-income countries due to the rise of antibacterial resistance. Innovative pharmacological targets have been investigated and carbonic anhydrases (CAs, EC: 4.2.1.1) encoded by V. cholerae (VchCAs) emerged as a valuable option. Recently, we developed a large library of para- and meta-benzenesulfonamides characterised by moieties with a different flexibility degree as CAs inhibitors. Stopped flow-based enzymatic assays showed strong inhibition of VchαCA for this library, while lower affinity was detected against the other isoforms. In particular, cyclic urea 9c emerged for a nanomolar inhibition of VchαCA (KI = 4.7 nM) and high selectivity with respect to human isoenzymes (SI≥ 90). Computational studies revealed the influence of moiety flexibility on inhibitory activity and isoform selectivity and allowed accurate SARs. However, although VchCAs are involved in the bacterium virulence and not in its survival, we evaluated the antibacterial activity of such compounds, resulting in no direct activity.


Asunto(s)
Anhidrasas Carbónicas , Vibrio cholerae , Humanos , Relación Estructura-Actividad , Estructura Molecular , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Anhidrasas Carbónicas/metabolismo , Bencenosulfonamidas
3.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36232735

RESUMEN

Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/prevención & control , Neuraminidasa , Péptidos/farmacología , Péptidos/uso terapéutico
4.
Molecules ; 27(14)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35889522

RESUMEN

Cancer is a multifactorial disorder caused by several aberrations in gene expression that generate a homeostatic imbalance between cell division and death [...].


Asunto(s)
Neoplasias , División Celular , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
5.
Molecules ; 27(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431985

RESUMEN

The involvement of human carbonic anhydrase (hCA) IX/XII in the pathogenesis and progression of many types of cancer is well acknowledged, and more recently human monoamine oxidases (hMAOs) A and B have been found important contributors to tumor development and aggressiveness. With a view of an enzymatic dual-blockade approach, in this investigation, new coumarin-based amino acyl and (pseudo)-dipeptidyl derivatives were synthesized and firstly evaluated in vitro for inhibitory activity and selectivity against membrane-bound and cytosolic hCAs (hCA IX/XII over hCA I/II), as well as the hMAOs, to estimate their potential as anticancer agents. De novo design of peptide-coumarin conjugates was subsequently carried out and involved the combination of the widely explored coumarin nucleus with the unique biophysical and structural properties of native or modified peptides. All compounds displayed nanomolar inhibitory activities towards membrane-anchored hCAs, whilst they were unable to block the ubiquitous CA I and II isoforms. Structural features pertinent to potent and selective CA inhibitory activity are discussed, and modeling studies were found to support the biological data. Lower potency inhibition of the hMAOs was observed, with most compounds showing preferential inhibition of hMAO-A. The binding of the most potent ligands (6 and 16) to the hydrophobic active site of hMAO-A was investigated in an attempt to explain selectivity on the molecular level. Calculated Ligand Efficiency values indicate that compound 6 has the potential to serve as a lead compound for developing innovative anticancer agents based on the dual inhibition strategy. This information may help design new coumarin-based peptide molecules with diverse bioactivities.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Humanos , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Monoaminooxidasa/metabolismo , Relación Estructura-Actividad , Anhidrasas Carbónicas/química , Cumarinas/farmacología , Cumarinas/química , Anhidrasa Carbónica II/metabolismo
6.
Molecules ; 27(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36431918

RESUMEN

Neurodegenerative diseases (NDs) are described as multifactorial and progressive syndromes with compromised cognitive and behavioral functions. The multi-target-directed ligand (MTDL) strategy is a promising paradigm in drug discovery, potentially leading to new opportunities to manage such complex diseases. Here, we studied the dual ability of a set of resveratrol (RSV) analogs to inhibit two important targets involved in neurodegeneration. The stilbenols 1−9 were tested as inhibitors of the human monoamine oxidases (MAOs) and carbonic anhydrases (CAs). The studied compounds displayed moderate to excellent in vitro enzyme inhibitory activity against both enzymes at micromolar/nanomolar concentrations. Among them, the best compound 4 displayed potent and selective inhibition against the MAO-B isoform (IC50 MAO-A 0.43 µM vs. IC50 MAO-B 0.01 µM) with respect to the parent compound resveratrol (IC50 MAO-A 13.5 µM vs. IC50 MAO-B > 100 µM). It also demonstrated a selective inhibition activity against hCA VII (KI 0.7 µM vs. KI 4.3 µM for RSV). To evaluate the plausible binding mode of 1−9 within the two enzymes, molecular docking and dynamics studies were performed, revealing specific and significant interactions in the active sites of both targets. The new compounds are of pharmacological interest in view of their considerably reduced toxicity previously observed, their physicochemical and pharmacokinetic profiles, and their dual inhibitory ability. Compound 4 is noteworthy as a promising lead in the development of MAO and CA inhibitors with therapeutic potential in neuroprotection.


Asunto(s)
Anhidrasas Carbónicas , Enfermedades Neurodegenerativas , Humanos , Inhibidores de la Monoaminooxidasa/química , Resveratrol/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Monoaminooxidasa/metabolismo , Anhidrasas Carbónicas/metabolismo
7.
J Enzyme Inhib Med Chem ; 36(1): 1632-1645, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34289751

RESUMEN

Nonsteroidal aromatase inhibitors (NSAIs) are well-established drugs for the therapy of breast cancer. However, they display some serious side effects, and their efficacy can be compromised by the development of chemoresistance. Previously, we have reported different indazole-based carbamates and piperidine-sulphonamides as potent aromatase inhibitors. Starting from the most promising compounds, here we have synthesised new indazole and triazole derivatives and evaluated their biological activity as potential dual agents, targeting both the aromatase and the inducible nitric oxide synthase, being this last dysregulated in breast cancer. Furthermore, selected compounds were evaluated as antiproliferative and cytotoxic agents in the MCF-7 cell line. Moreover, considering the therapeutic diversity of azole-based compounds, all the synthesized compounds were also evaluated as antifungals on different Candida strains. A docking study, as well as molecular dynamics simulation, were carried out to shed light on the binding mode of the most interesting compound into the different target enzymes catalytic sites.


Asunto(s)
Antifúngicos/farmacología , Antineoplásicos/farmacología , Inhibidores de la Aromatasa/farmacología , Compuestos Azo/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Micosis/tratamiento farmacológico , Antifúngicos/síntesis química , Antifúngicos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores de la Aromatasa/síntesis química , Inhibidores de la Aromatasa/química , Compuestos Azo/síntesis química , Compuestos Azo/química , Candida/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad
8.
Molecules ; 26(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803309

RESUMEN

The inhibition of cyclin dependent kinases 4 and 6 plays a role in aromatase inhibitor resistant metastatic breast cancer. Three dual CDK4/6 inhibitors have been approved for the breast cancer treatment that, in combination with the endocrine therapy, dramatically improved the survival outcomes both in first and later line settings. The developments of the last five years in the search for new selective CDK4/6 inhibitors with increased selectivity, treatment efficacy, and reduced adverse effects are reviewed, considering the small-molecule inhibitors and proteolysis-targeting chimeras (PROTACs) approaches, mainly pointing at structure-activity relationships, selectivity against different kinases and antiproliferative activity.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Terapia Molecular Dirigida/tendencias
9.
Bioorg Med Chem Lett ; 29(16): 2302-2306, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31272790

RESUMEN

The reduced activation of PPARs has a positive impact on cancer cell growth and viability in multiple preclinical tumor models, suggesting a new therapeutic potential for PPAR antagonists. In the present study, the benzothiazole amides 2a-g were synthesized and their activities on PPARs were investigated. Transactivation assay showed a moderate activity of the novel compounds as PPARα antagonists. Notably, in cellular assays they exhibited cytotoxicity in pancreatic, colorectal and paraganglioma cancer cells overexpressing PPARα. In particular, compound 2b showed the most remarkable inhibition of viability (greater than 90%) in two paraganglioma cell lines, with IC50 values in the low micromolar range. In addition, 2b markedly impaired colony formation capacity in the same cells. Taken together, these results show a relevant anti-proliferative potential of compound 2b, which appears particularly effective in paraganglioma, a rare tumor poorly responsive to chemotherapy.


Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Benzotiazoles/farmacología , Receptores Activados del Proliferador del Peroxisoma/antagonistas & inhibidores , Amidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzotiazoles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Relación Estructura-Actividad
10.
J Enzyme Inhib Med Chem ; 34(1): 1051-1061, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31074307

RESUMEN

A large library of fibrate-based N-acylsulphonamides was designed, synthesised, and fully characterised in order to propose them as zinc binders for the inhibition of human carbonic anhydrase (hCA) enzymatic activity. Synthesised compounds were tested against four hCAs (I, II, IX, and XII) revealing a promising submicromolar inhibitory activity characterised by an isozyme selectivity pattern. Structural modifications explored within this scaffold are: presence of an aryl ring on the sulphonamide, p-substitution of this aryl ring, benzothiazole or benzophenone as core nuclei, and an n-propyl chain or a geminal dimethyl at Cα carbon. Biological results fitted well with molecular modelling analyses, revealing a putative direct interaction with the zinc ion in the active site of hCA I, II and IX. These findings supported the exploration of less investigated secondary sulphonamides as potential hCA inhibitors.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Simulación del Acoplamiento Molecular , Sulfonamidas/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Dominio Catalítico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
11.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30678338

RESUMEN

Gliomas are the most aggressive adult primary brain tumors. Expression of inducible Nitric Oxide Synthase has been reported as a hallmark of chemoresistance in gliomas and several studies have reported that inhibition of inducible Nitric Oxide Synthase could be related to a decreased proliferation of glioma cells. The present work was to analyze the molecular effects of the acetamidine derivative compound 39 (formally CM544, N-(3-{[(1-iminioethyl)amino]methyl}benzyl) prolinamide dihydrochloride), a newly synthetized iNOS inhibitor, in a C6 rat glioma cell model. There is evidence of CM544 selective binding to the iNOS, an event that triggers the accumulation of ROS/RNS, the expression of Nrf-2 and the phosphorylation of MAPKs after 3 h of treatment. In the long run, CM544 leads to the dephosphorylation of p38 and to a massive cleavage of PARP-1, confirming the block of C6 rat glioma cell proliferation in the G1/S checkpoint and the occurrence of necrotic cell death.


Asunto(s)
Amidinas/farmacología , Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glioma/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Prolina/análogos & derivados , Animales , Línea Celular Tumoral , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Prolina/farmacología , Proteolisis , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Bioorg Med Chem Lett ; 26(13): 3192-3194, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27161804

RESUMEN

The most frequently used treatment for hormone receptor positive breast cancer in post-menopausal women are aromatase inhibitors. In order to develop new aromatase inhibitors, we designed and synthesized new imidazolylmethylpiperidine sulfonamides using the structure of the previously identified aromatase inhibitor SYN 20028567 as starting lead. By this approach, three new aromatase inhibitors with IC50 values that are similar to that of letrozole and SYN 20028567 were identified.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Aromatasa/metabolismo , Piperidinas/farmacología , Sulfonamidas/farmacología , Inhibidores de la Aromatasa/síntesis química , Inhibidores de la Aromatasa/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
13.
J Sep Sci ; 37(12): 1380-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24687974

RESUMEN

Nitric oxide synthase (NOS) inhibitors are potential drug candidates due to the critical role of an excessive production of nitric oxide in a range of diseases. At present, the radiometric detection of L-[(3)H]-citrulline produced from L-[(3)H]-arginine during the enzymatic reaction is one of the most accepted methods to assess the in vitro activity of NOS inhibitors. Here we report a fast, easy, and cheap reversed-phase high-performance liquid chromatography method with fluorescence detection, based on the precolumn derivatization of L-citrulline with o-phthaldialdehyde/N-acetyl cysteine, for the in vitro screening of NOS inhibitors. To evaluate enzyme inhibition by the developed method, N-[3-(aminomethyl)benzyl]acetamidine, a potent and selective inhibitor of inducible NOS, was used as a test compound. The half maximal inhibitory concentration obtained was comparable to that derived by the well-established radiometric assay.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Inhibidores Enzimáticos/química , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Humanos , Cinética , Óxido Nítrico Sintasa de Tipo II/química
14.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675367

RESUMEN

In recent years, continuous progress has been made in the development of new anticancer drugs, and several compounds (small molecules, engineered antibodies, immunomodulators, etc [...].

15.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38543102

RESUMEN

Immunotherapy has marked a revolution in cancer therapy. The most extensively studied target in this field is represented by the protein-protein interaction between PD-1 and its ligand, PD-L1. The promising results obtained with the clinical use of monoclonal antibodies (mAbs) directed against both PD-1 and PD-L1 have prompted the search for small-molecule binders capable of disrupting the protein-protein contact and overcoming the limitations presented by mAbs. The disclosure of the first X-ray complexes of PD-L1 with BMS ligands showed the protein in dimeric form, with the ligand in a symmetrical hydrophobic tunnel. These findings paved the way for the discovery of new ligands. To this end, and to understand the binding mechanism of small molecules to PD-L1 along with the dimerization process, many structure-based computational studies have been applied. In the present review, we examined the most relevant articles presenting computational analyses aimed at elucidating the binding mechanism of PD-L1 with PD-1 and small molecule ligands. Additionally, virtual screening studies that identified validated PD-L1 ligands were included. The relevance of the reported studies highlights the increasingly prominent role that these techniques can play in chemical biology and drug discovery.

16.
Biochim Biophys Acta ; 1820(12): 2095-104, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22951221

RESUMEN

BACKGROUND: Previous reports suggest that NO may contribute to the pathophysiology of septic shock. Recently, we have synthesized and characterized a series of benzyl- and dibenzyl derivative of N-(3-aminobenzyl)acetamidine, a potent and selective inhibitor of iNOS, in vitro assay. We evaluated the molecular mechanisms by which these compounds are involved in the regulation of NOSs expression. METHODS: H9c2 cells were stimulated with lipopolysaccharide (LPS) in the presence or absence of acetamidine-derivative. The NOSs mRNA and protein, and activation of signaling pathways (Akt and NF-κB) were assayed. RESULTS: The induction of endotoxic shock in H9c2 with LPS caused an increase of inducible NOS and a down-regulation of constitutive NOS. The molecular mechanism involved in the modulation of NOSs expression in H9c2 cells upon LPS stimulation resulted in the modification of the redox state responsible for NF-kB nuclear translocation via NIK -IKKα/ß-IkBα, simultaneously to the inactivation of the PI3K/Akt pathway. The compounds acted as an anti-inflammatory modulator. CONCLUSION: These results suggest that LPS regulates the opposite NOS expression in H9c2 cells by modifying the redox state of these cells responsible for the NF-kB nuclear translocation via NIK-IKKα/ß-IkBα, simultaneous to the inactivation of the PI3K/Akt pathway. The new molecule acts as an anti-inflammatory modulator in LPS-induced inflammation in H9c2 cells by the restoration of eNOS and nNOS expressions, mechanistically involving the PI3K/Akt pathway. GENERAL SIGNIFICANCE: This study delineates the underlying mechanisms of opposite NOSs expression in H9c2 cells stimulated with LPS.


Asunto(s)
Amidinas/farmacología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Mioblastos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citometría de Flujo , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/efectos de los fármacos , FN-kappa B/genética , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Nitritos/metabolismo , Oxidación-Reducción , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN Mensajero/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos
17.
Future Med Chem ; 15(20): 1865-1883, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37886837

RESUMEN

Aim: Development of dual-acting antibacterial agents containing Erlotinib, a recognized EGFR inhibitor used as an anticancer agent, with differently spaced benzenesulfonamide moieties known to bind and inhibit Helicobacter pylori carbonic anhydrase (HpCA) or the antiviral Zidovudine. Methods & materials: Through rational design, ten derivatives were obtained via a straightforward synthesis including a click chemistry reaction. Inhibitory activity against a panel of pathogenic carbonic anhydrases and antibacterial susceptibility of H. pylori ATCC 43504 were assessed. Docking studies on α-carbonic anhydrase enzymes and EGFR were conducted to gain insight into the binding mode of these compounds. Results & conclusion: Some compounds proved to be strong inhibitors of HpCA and showed good anti-H. pylori activity. Computational studies on the targeted enzymes shed light on the interaction hotspots.


Asunto(s)
Anhidrasas Carbónicas , Helicobacter pylori , Anhidrasas Carbónicas/metabolismo , Helicobacter pylori/metabolismo , Clorhidrato de Erlotinib/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Receptores ErbB/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Anhidrasa Carbónica IX , Bencenosulfonamidas
18.
Bioorg Med Chem Lett ; 22(24): 7662-6, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23102891

RESUMEN

In an effort to develop safe and efficacious compounds for the treatment of metabolic disorders, new compounds based on a combination of clofibric acid, the active metabolite of clofibrate, and lipophilic groups derived from natural products chalcone and stilbene were synthesised. Some of them were found to be active at micromolar concentrations only on PPARα or PPARγ, while others were identified as dual agonists PPARα/γ.


Asunto(s)
Clofibrato/farmacología , PPAR alfa/agonistas , PPAR gamma/agonistas , Clofibrato/síntesis química , Clofibrato/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Relación Estructura-Actividad
19.
Eur J Med Chem ; 233: 114242, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276424

RESUMEN

Neurodegenerative diseases (NDs) are characterized by gradual and progressive loss of selectively vulnerable populations of neurons, including death of neurons in different regions, leading to nervous system dysfunction. However, pharmacological treatments are only symptomatic, because the exact causes of the disease are not yet known. For this reason, in recent years, the research has been focused on the discovery of new molecules able to target neuropathological pathways involved in NDs. A great deal of attention has been paid to natural polyphenols due to their many biological effects and resveratrol has attracted special interest since its ability to interact simultaneously with the multiple targets implicated in NDs. Moreover, the structural simplicity of the stilbene core, the broad spectrum of possible modifications, and the improved synthetic strategies, made resveratrol an attractive chemical starting point for the search of new entities with extended therapeutic uses in NDs. In this review, a systematic update of the resveratrol-based compounds, and Structure-Activity Relationship analysis were provided as promising drug candidates for the treatment of NDs.


Asunto(s)
Enfermedades Neurodegenerativas , Estilbenos , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Polifenoles , Resveratrol/farmacología , Resveratrol/uso terapéutico , Estilbenos/química , Estilbenos/farmacología , Estilbenos/uso terapéutico , Relación Estructura-Actividad
20.
Biology (Basel) ; 11(1)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053112

RESUMEN

The manipulation of host metabolisms by viral infections has been demonstrated by several studies, with a marked influence on the synthesis and utilization of glucose, nucleotides, fatty acids, and amino acids. The ability of virus to perturb the metabolic status of the infected organism is directly linked to the outcome of the viral infection. A great deal of research in recent years has been focusing on these metabolic aspects, pointing at modifications induced by virus, and suggesting novel strategies to counteract the perturbed host metabolism. In this review, our attention is turned on PPARs, nuclear receptors controlling multiple metabolic actions, and on the effects played by PPAR ligands during viral infections. The role of PPAR agonists and antagonists during SARS-CoV-2, HCV, and HCMV infections will be analyzed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA