Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 36(10): 3225-3233, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32073624

RESUMEN

MOTIVATION: For the diagnosis of cancer, manually counting nuclei on massive histopathological images is tedious and the counting results might vary due to the subjective nature of the operation. RESULTS: This paper presents a new segmentation and counting method for nuclei, which can automatically provide nucleus counting results. This method segments nuclei with detected nuclei seed markers through a modified simple one-pass superpixel segmentation method. Rather than using a single pixel as a seed, we created a superseed for each nucleus to involve more information for improved segmentation results. Nucleus pixels are extracted by a newly proposed fusing method to reduce stain variations and preserve nucleus contour information. By evaluating segmentation results, the proposed method was compared to five existing methods on a dataset with 52 immunohistochemically (IHC) stained images. Our proposed method produced the highest mean F1-score of 0.668. By evaluating the counting results, another dataset with more than 30 000 IHC stained nuclei in 88 images were prepared. The correlation between automatically generated nucleus counting results and manual nucleus counting results was up to R2 = 0.901 (P < 0.001). By evaluating segmentation results of proposed method-based tool, we tested on a 2018 Data Science Bowl (DSB) competition dataset, three users obtained DSB score of 0.331 ± 0.006. AVAILABILITY AND IMPLEMENTATION: The proposed method has been implemented as a plugin tool in ImageJ and the source code can be freely downloaded. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Núcleo Celular , Inmunohistoquímica , Coloración y Etiquetado
2.
Sci Rep ; 5: 8354, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25667059

RESUMEN

We describe a method for the creation of an efficient optical scatter trap by using fully crystalline octahedral Silicon nanoparticles (Si-NPs) of approximately 100 nanometres in size. The light trapping, even when probing an isolated nanoparticle, is revealed by an enormous amplification of the Raman yield of up to 10(8) times that of a similar Si bulk volume. The mechanism conceived and optimised for obtaining such a result was related to the capability of a Si octahedron to trap the light because of its geometrical parameters. Furthermore, Si-NPs act as very efficient light scatterers not only for the direct light beam but also for the trapped light after it escapes the nanoparticle. These two effects are observed, either superimposed or separated, by means of the Raman yield and by photoluminescence enhancements. The inductively coupled plasma synthesis process performed at a temperature of only 50 °C allows for the ubiquitous use of these particles on several substrates for optical and photovoltaic applications.

3.
Sci Rep ; 3: 2674, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24056300

RESUMEN

Empowering an indirect band-gap material like Si with optical functionalities, firstly light emission, represents a huge advancement constantly pursued in the realization of any integrated photonic device. We report the demonstration of giant photoluminescence (PL) emission by a newly synthesized material consisting of crystalline faceted Si grains (fg-Si), a hundred nanometer in size, assembled in a porous and columnar configuration, without any post processing. A laser beam with wavelength 632.8 nm locally produce such a high temperature, determined on layers of a given thickness by Raman spectra, to induce giant PL radiation emission. The optical gain reaches the highest value ever, 0.14 cm/W, representing an increase of 3 orders of magnitude with respect to comparable data recently obtained in nanocrystals. Giant emission has been obtained from fg-Si deposited either on glass or on flexible, low cost, polymeric substrate opening the possibility to fabricate new devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA